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Abstract 

The widespread use of the Internet signals the need for a better understanding of trust as 

a basis for secure on-line interaction. In the face of increasing uncertainty and risk, users 

and machines must be allowed to reason effectively about the trustworthiness of other 

entities. In this thesis, we propose a trust model that assists users and machines with 

decision-making in online interactions by using past behavior as a predictor of likely 

future behavior. We develop a general method to automatically compute trust based on 

self-experience and the recommendations of others. Our trust model solves the problem 

of recommendation combination and detection of unfair recommendations. Our approach 

involves data analysis methods (Bayesian estimation, Dirichlet distribution), and 

machine learning methods (Weighted Majority Algorithm). Furthermore, we apply our 

trust model to several utility models to increase the accuracy of decision-making in 

different contexts of Web Services. We describe simulation experiments to illustrate its 

effectiveness, robustness and the evolution of trust. 
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Trust, Utility, Decision making, Bayesian estimation, Weighted Majority Algorithm 
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All models are wrong, but some are useful. 
George Box, 1979 

1 Introduction 

1.1 Problem definition 

With the expansion of the Internet, users and services are often required to interact 

with unknown entities. This is so in application areas such as e-commerce, knowledge 

sharing, and even online gaming. Because the entities are autonomous and potentially 

subject to different administrative and legal domains, it is important for each user to 

identify trustworthy entities or correspondents with whom he/she should interact, and 

untrustworthy correspondents with whom he/she should avoid interaction [8]. 

Trust models have emerged as an important risk management mechanism in online 

communities. The goal of trust models is to assist users with decision-making in online 

interactions, by using past behavior as a predictor of likely future behavior [12]. Most 

electronic marketplaces on the Internet, such as eBay, Yahoo Auction, Amazon, and 

Epinions, support some form of trust management mechanism. eBay, for example, 

encourages both parties of each transaction to rate one another with a positive (+1), a 

neutral (0), or a negative (-1) rating. eBay makes the cumulative ratings of its members 

publicly known to every registered user [12]. Epinions provides a mechanism to weave 

the “Web of Trust”, a network of members whose reviews and ratings have been 

consistently found valuable. Each member can write a review on any topic and product. 

Reviews can be rated as “Not Helpful”, “Somewhat Helpful”, “Helpful”, and “Very 

Helpful”. The “Web of Trust” mimics the way people share word-of-mouth advice every 

day. Shareaza, a P2P file sharing system, allows members to write comments and ratings 

with respect to shared files. Thus, Shareaza allows members to avoid those that are fakes 

and download good quality and accurately represented files. 

According to Dellarocas [12], "despite their widespread adoption and undeniable 

importance, very little work has been published so far on the reliability of various trust 
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mechanisms and, even more importantly, on ways in which these mechanisms can be 

compromised". Lack of trust has often been cited as a major barrier to the adoption of 

online interaction. To address this problem, a novel distributed trust model was 

developed. 

Our goal is to develop a general trust model that can be used for making rational 

decisions in order to make optimal choices. It should be usable in the context of Web 

Services [15], [40] and online transactions that meet real people’s needs. We have opted 

for a trust model that is based on stochastic models of Web Services. We will explain 

how trust can be built up from experimental evidence and how statistical methods can be 

applied, together with utility functions, to make rational choices between different 

service providers or different strategies for problem solving. Our trust model is scalable 

in the number of users and services, and is usable, both for people and artificial 

autonomous agents [19]. 

1.2 Overview of the research 

This thesis describes my research interest for pursuing the Master of Science (M.Sc.) 

in Systems Science at University of Ottawa. The objective of this investigation is to 

examine the challenges involved in developing a general trust model in the context of 

Web Services [15], [40] to secure online interactions that meet real people’s needs. It 

should be scalable in the number of users and services, and will be usable, both for 

people and artificial autonomous agents. This thesis has three primary research 

contributions: 

1. A general framework for evaluating trust of entities and services in online 

communities. We develop a general method to automatically compute trust, based on 

self-experience and recommendations. The trust in our model is not a simple scalar, 

nor a binary variable, but a multi-dimensional variable. This flexibility allows its 

application to a variety of different usage scenarios. 

2. A learning method to combine recommendations according to their statistical 

attributes. We use a machine learning method (the Weighted Majority Algorithm) in 

our model to handle recommendations. Our trust model can dynamically learn from 
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the history of recommendations. Our trust model can automatically estimate the 

quality of recommendations and therefore can make robust, accurate decisions.   

3. An analysis of the characteristics of trust update. We study the dynamic of trust 

update based on self-experience and recommendations. We also study the trust of 

entities with evolving performance. 

 

This work may facilitate online communities in two aspects: 

1. Trust guides users in choosing products and services; 

2. Trust assists autonomous agents to cooperate. 

The rest of this thesis is organized as follows. Chapter 1 states the problem definition, 

introduces the motivation and goal of the research. Chapter 2 summarizes the 

background and related work. We first give definitions of key terms, including trust, 

situational trust, general trust, basic trust, and different entities. We review previous 

work on trust models, recommendation handling, and decision making (including the 

Expected Utility Theory). In chapter 3 we introduce the mathematical tools including the 

Bayesian estimation, the Dirichlet distribution, the Weighted Majority Algorithm. These 

tools are the fundamentals to our trust model. Chapter 4 and chapter 5 introduce our 

approach. We also present several simple examples to show how our trust model can be 

used in different contexts. Chapter 6 presents simulations and their results. We describe 

the different behavior of our trust model in several scenarios. The explanations to non-

intuitive behaviors are also given. Chapter 7 concludes the thesis and points to future 

work. We discuss the limitations of our trust model and the ignored issues. 

 

2 Background and related work 

2.1 Definitions of important terms 

This section briefly defines important terms that are used repeatedly in the thesis. By 
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understanding the way these terms are used, the reader will gain a clearer understanding 

of the nature of the research. 

2.1.1 Trust 

Although we use trust every day of our lives, trust has suffered from an imperfect 

understanding, a plethora of definitions, and an informal use in the literature [36]. It is 

common to say “I trust you,” but what does that mean? [36] 

According to Merriam-Webster Online Dictionary [25], trust is: 

1 a: assured reliance on the character, ability, strength, or truth of someone or 

something; 

    2 a: dependence on something future or contingent; 

The ITU-T (International Telecommunication Union – Telecommunication 

Standardization Sector) Recommendation X.509 specification gives us one definition:  

Generally, an entity can be said to “trust” a second entity when it (the first entity) 

makes the assumption that the second entity will behave exactly as the first entity expects.  

Therefore, trust deals with assumptions, expectations, and behavior. This clearly 

implies that trust cannot be measured quantitatively, that there is risk associated with 

trust, and that the establishment of trust cannot always be fully automated (for example, 

when the entities are human users) [10]. In the above definitions, trust finally depends 

upon some sort of beliefs, predictions, or expectations. However, it is not clear where 

these beliefs and expectations come from [11]. 

Marsh [36] proposes the concept of trust to make agents less vulnerable to others. 

Trust is basic in any kind of action in an uncertain world; in particular it is crucial in any 

form of collaboration with other autonomous agents. There is no universally accepted 

definition for trust [36], [26]. Marsh's thesis [36] presents an overview of trust as a social 

phenomenon and discusses it formally. He argues that trust is: 

1. A means for understanding and adapting to the complexity of the environment. 

2. A means of providing added robustness to independent agents. 

3. A useful judgment in the light of experience of the behavior of others. 

4. Applicable to inanimate others. 
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Marsh's thesis argues these points from the point of view of artificial agents. Trust in 

an artificial agent is a means of providing an additional tool for the consideration of other 

agents and the environment in which it exists. Moreover, a formalization of trust enables 

the embedding of the concept into an artificial agent [36]. 

Elofson [17] gives a definition suitable for our purpose. He agrees that observations 

are important for trust, and he defines trust as follows: “trust is the outcome of 

observations leading to the belief that the actions of another may be relied upon, without 

explicit guarantee, to achieve a goal in a risky situation.” Elofson notes that trust can be 

developed over time as the outcome of a series of confirming observations (also called 

the dynamics of trust). From his experimental work, Elofson concludes that information 

regarding the reasoning process of an entity, more than the actual conclusions of that 

entity, affect the trust in the conclusions of that entity [11]. 

Trust is formed and updated over time through direct interactions (self experiences) or 

through information (recommendations) provided by other entities of society about 

experiences they have had [26]. Each event that can influence the degree of trust is 

interpreted by the entity either as a negative or a positive experience. If the event is 

interpreted as a negative experience, the entity will lose his trust to some degree and if it 

is interpreted to be positive, the entity will gain trust to some degree. The change of 

degree of trust depends on the trust model used by the entity. This implies that the 

trusting entity carries out a form of continual verification and validation of the subject of 

trust over time [11]. 

2.1.2 Situational trust 

According to Marsh [36], individual entities are members of the set of all entities, 

which is society, or community. A society of entities is defined as a number of entities 

which are grouped together according to some metric [36]. Entities can be members of 

several societies. For example, Alice is a member of the society of University of Ottawa, 

but also of the basketball team. Furthermore, Marsh [36] defines a situation as a point in 

time relative to a specific entity. Therefore, entities find themselves in particular 

situations by definition [36]. Different entities in the “same” situation will not consider it 
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from the same point of view. Marsh [36] “illustrates this point with the story of children 

playing, some of whom have mud on their foreheads, and some who don't. For each child 

in the situation, it is different because each can see every other child except themselves 

[36]. Thus, in a particular situation, entities may have only incomplete knowledge about 

that situation, yet some knowledge may be common (there are some children with mud 

on their foreheads - which ones is more difficult to answer, since we don't know if we're 

one of them).” Marsh notes that situations are entity-centered or subjective. Following 

Marsh [36], we represent situations with Greek letters, with subscripts for the entity 

concerned: δα is situation δ from α's point of view, δβ is situation δ from β's. Since it is 

evident which entity is doing the considering, the subscript is dropped in the formulas 

that follow.  

In addition, according to Marsh [36], different situations will require different 

considerations with regard to trust, and most will come out with different values for trust, 

even in the same person; while I may trust Alice to drive me to the airport, I most 

certainly would not trust her to fly the plane! This suggests that entities should consider 

others relative to the situation in which they find themselves (indeed, to the ways in 

which they envisage the situation to involve). Thus, we have a representation for the 

amount of trust an entity has in another in a given situation [36]. This use of “situation” 

is similar to Abdul-Rahman and Hailes’s use of “context” [3] and Tan and Thoen’s use 

of “categories” [41]. 

In this thesis, we represent an entity’s (α) trust in another entity (β) within a certain 

situation (δ) by the following expression: Tα(β,δ). We note that the situation δ is from 

entity α's point of view. 

We consider the trusting entity to be adaptive in the sense that he/she learns from past 

experience; we would then expect that situational trust is dependent on what has 

happened to the entity in the past. Good experiences lead to a greater situational trust in 

the trusted entity, and bad experiences lead to a lower situational trust [36]. 

2.1.3 General trust 

General trust represents the trust entity α has in β. It is not relative to any specific 
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situation, it simply represents overall trust in another entity [36]. Therefore, the general 

trust is derived from past experience with entity β in all situations. We write Tα(β) for the 

entity α’s general trust in entity β. In Marsh [36], “the value represents the probability 

that entity β will behave 'as if' entity α trusts β. In other words, entity α expects that β 

will behave according to α's best interests, and will not attempt to harm α”. 

2.1.4 Basic trust 

One may ask the question: What is the initial trust an entity may have without relying 

on recommendations or his/her direct experiences? This initial trust reflects the trusting 

disposition of the entity.  

In Marsh [36], the initial trust is called “basic trust”. Marsh [36] argues that “basic 

trust is derived from past experience in all situations, indeed through the entity’s entire 

life time of experiences.” Basic trust is simply representative of the general trusting 

disposition of the entity; it is not the amount of trust an entity has in any other entity, 

situation, or environment [36]. The higher the basic trust is, the more trusting the entity is. 

Considering entities as trusting entities allows us to simulate a basic ‘disposition’ to trust 

someone or something that has only just been encountered [36]. In Abdul-Rahman and 

Hailes [3], basic trust is the general trusting attitude of the entity, a pervasive attitude 

toward oneself and the world. We write Tα for the basic trust of entity α. 

From the definition, we expect that basic trust is dependent on past experience.  Good 

experiences lead to a greater disposition to trust, and vice versa [36]. Marsh [36] also 

presents two pathological forms of basic trust: optimists and pessimists. The optimists’ 

basic trust in others can only increase, despite past experience. The opposite is true for 

pessimists [36]. In this thesis, we assume the basic trust is fixed for simplicity. 

2.1.5 Different types of entities involved in the trust model 

Basically, we can identify three types of entities involved in a trust model: (1) the 

trusting entity, which we will represent by the letter α, (2) the trusted entity, which we 

will represent by the letter β, and (3) possibly some recommender entities. The trusted 

entity is usually a kind of service provider. Typically there are several service providers 
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and the trusting entity, a potential client, has to decide which service provider to choose 

in order to satisfy some existing needs. The purpose of the trust model is to facilitate this 

decision. If the trust of the entity α is not well established (e.g. the entity α has few direct 

experiences upon which to draw), the entity may rely on recommendations from 

recommender entities. A recommender entity could be of the same nature as the client α, 

or it could be a recommendation server that accumulates information over time from 

many recommenders [19]. 

We also consider trust from the perspective of the software agent. In this thesis, the 

concept “user”, “agent”, and “entity” are exchangeable [19]. 

2.2 Review of trust models 

In the last few years, there has been a lot of work on trust within the context of e-

commerce and Internet security. We provide an overview of some significant work in the 

following. 

The trust model proposed by Marsh [36] integrates many aspects of trust taken from 

sociology and psychology. Marsh [36] chooses to represent trust as a continuous variable 

over the range [-1, 1). The higher the trust value, the more trustworthy the entity is. His 

formalization of trust provides the basis for trusting artificial agents, which could form 

stable coalitions, take "knowledgeable" risks, and make robust decisions in complex 

environments. Marsh [36] presents experimental results from simple implementations of 

artificial trusting agents. Marsh’s model has strong sociological foundations. Marsh tries 

to incorporate all aspects of social trust and introduces a large number of variables into 

his model. It is a relatively complex and abstract model and cannot be easily used in 

today’s electronic communities. As Marsh [36] pointed out, several limitations exist for 

his trust model. Firstly, trust is represented in his model as subjective real number 

between the arbitrary range -1 and +1. The model exhibits problems at the extreme 

values and at 0. Secondly, the operators and algebra for manipulating trust values are 

limited and have trouble dealing with negative trust values. Marsh also pointed to 

difficulties with the concept of “negative” trust and its propagation [22]. 

Abdul-Rahman and Hailes [3] propose a trust model based on subjective probability.  
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They propose that the trust concept can be divided into direct and recommender trust. 

They represent direct trust as one of four agent-specified values about another agent 

(“very trustworthy”, “trustworthy”, “untrustworthy”, and “very untrustworthy”).  

Recommended trust can be derived from word-of-mouth recommendations, which 

Abdul-Rahman and Hailes consider as “reputation”. The translation from 

recommendations to trust is performed through an ad-hoc scheme [22]. Their aim is to 

provide a trust model based on the real world social properties of trust, founded on work 

from the social sciences. Trust is not an objective property of an agent, but a subjective 

degree of belief about agents. A trust decision is based on the truster’s relevant prior 

experiences and knowledge. They introduce “semantic distance” to indicate the 

difference between a recommendation and a truster’s own perception [3]. 

Yu and Singh [8], focusing on acquiring information from other agents in an agent 

community, propose a trust model which adapts the Dempster-Shafer Theory of 

Evidence [16] to represent and propagate the ratings that agents give to their 

correspondents. When evaluating the trustworthiness of a correspondent, an agent 

combines its local evidence (based on direct prior interactions with the correspondent) 

with the testimonies of other agents regarding the same correspondent. Their approach 

includes the TrustNet representation through which the ratings can be combined. In their 

following work [9], Yu and Singh introduce the weighted majority technique for belief 

function and aggregation to detect deceptive testimonies. 

Tran and Cohen [37] propose reputation-oriented reinforcement learning algorithms 

for buyers and sellers in open, dynamic, uncertain, and untrusted market environments. 

In their approach, buyers learn to avoid the risk of purchasing low quality goods and to 

maximize their expected value of goods by dynamically maintaining sets of reputable 

and disreputable sellers. Sellers learn to maximize their expected profits by adjusting 

product prices and optionally altering the quality of their goods. A buyer selects a seller 

based on his/her direct experiences without communicating with other buyers. 

Chen and Singh [24] propose a hierarchical reputation structure and the confidence 

level of reputation. The evaluation of an individual comment is split into two parts: 

evaluation of its numeric rating, and evaluation of its text review. A reputation tree is 

built, which consists of local match, global match, and confidence. They develop a 
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general method to compute reputations for raters based on the ratings they and others 

give to objects, and incorporate these reputations to generate value-added information 

about rated objects. The value-added information includes the reputations of raters 

(organized as a hierarchy of categories), the scores of objects (taking reputations of raters 

into account) and the confidence level of scores.  

2.3 Review of methods for dealing with 

Recommendations 

We consider the problem of distributed trust management in large distributed systems 

of autonomous and heterogeneous entities. The basic idea is to let entities rate each 

other's performance during transactions. The aggregated ratings about a given entity are 

used to derive trust, which can assist an entity in deciding whether or not to transact with 

the given entity in the future. Furthermore, entities can exchange information regarding 

the aggregated ratings of a given entity via recommendations [4]. In such trust referral 

systems, it is then the summation of recommendations that plays an important role in 

decision making. 

In trust referral systems, a fundamental problem is that the quality of 

recommendations is not guaranteed, in the sense that malicious entities could give unfair 

recommendations and/or the subjective evaluation criteria may be different. Because 

entities are distributed and autonomous, it is generally unreasonable to assume that there 

exist universally accepted trustworthy authorities who can declare the trustworthiness of 

different entities [9]. Consequently, the trusting entities must rely on themselves for 

discerning the trustworthiness of recommenders and the quality of recommendations. 

Dellarocas [12] presents an approach which is targeted at detecting and excluding 

ratings that are unfairly high (he calls this “ballot-stuffing”). Dellarocas proposes 

mechanisms for addressing two important classes of reputation system fraud: (1) buyers 

intentionally provide unfairly high or unfairly low ratings for sellers; (2) sellers attempt 

to hide behind their cumulative reputation in order to discriminate on the quality of 

service they provide to different buyers (positive discrimination, negative discrimination). 

Dellarocas uses controlled anonymity to avoid unfairly low ratings and negative 
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discrimination, and uses cluster filtering to reduce the effect of unfairly high ratings and 

positive discrimination [4]. To calculate an unbiased personalized reputation estimate, 

Dellarocas' scheme first uses collaborative filtering to determine a neighborhood group 

of buyers whose ratings over commonly rated sellers are similar. Then the ratings over a 

particular seller are divided into two groups (upper and lower cluster) by the 

Macnaughton-Smith et al. (1964) cluster filtering algorithm [29] in order to filter out the 

ratings that are most likely to be unfairly high [4]. The final reputation estimate is 

calculated from the ratings in the lower cluster only. Under the assumption that the fair 

and unfair ratings follow the same distribution type (e.g. normal distribution), but with 

different parameters, this technique typically reduces the unfair bias by more than 80% 

[4]. 

Yu and Singh [9] developed a model of reputation management based on the 

Dempster-Shafer Theory of Evidence [16]. Their approach focused on detecting and 

protecting against spurious ratings. Their approach involves an application of the 

Weighted Majority Algorithm to the Dempster-Shafer belief function and aggregation. 

Yu and Singh [9] distinguish between local belief and total belief. Local belief is from 

direct interactions and can be propagated to others. Total belief is the combination of 

local belief (if any) and testimonies received from any witnesses (recommenders). A 

TrustNet (TN) is built on an agent's acquaintances and neighbors and trustworthiness 

testimonies (recommendations) are collected by branching out through the referral chain 

(the references to other agents is controlled by a branching factor and depth limit). The 

testimonies of these witnesses are combined by using the Weighted Majority Algorithm 

to improve prediction accuracy. Some simple models of deception are studied to show 

the prediction accuracy and the evolution of trust networks [9]. 

Whitby et al. [4] propose a statistical filtering technique for excluding unfair ratings in 

Bayesian Reputation Systems. The assumption in their approach is that unfair ratings can 

be recognized by their statistical properties only. Whitby et al. design an iterated filtering 

algorithm based on the Beta distribution for binary ratings systems to exclude the 

presumed unfair ratings. In Whitby et al. [4], “the filtering algorithm is executed 

whenever an agent Z's reputation score must be recalculated. It assumes the existence of 

cumulative ratings vectors ρ(X,Z) for each rater X in the community. The basic principle 

11 



  

is to verify that the score R(Z) of an agent Z falls between the q quantile (lower) and (1-

q) quantile (upper) of ρ(X,Z) for each rater X. Whenever that is not the case for a given 

rater, that rater is considered unfair, and its ratings are excluded” [4]. The simulation 

results demonstrated that the filtering algorithm is most effective when a moderate (less 

than 30%) number of raters behave consistently unfairly [4]. 

We developed a model of trust management based on the Bayesian estimation and the 

Weighted Majority Algorithm (WMA). In the WMA, the weight given to each 

recommender depends on the history and quality of the recommendations given by the 

recommender. The assumption is that recommenders with low weights are likely to give 

unfair recommendations and recommenders with high weights are likely to give fair 

recommendations. The weights are updated after each transaction. By assigning different 

weights, our proposal detects and protects against unfair recommendations. By using 

Bayesian estimation, our proposal integrates the subjective prior knowledge and the 

actual experience into the estimation of trust. 

Our proposal is different from the above proposals. Unlike Yu and Singh's proposal 

[9], our proposal uses the Bayesian estimation and integrates the subjective prior 

knowledge into the estimation of trust. Our proposal also extends univariate trust ratings 

to multivariate ratings [19]. Furthermore, we focus on recommendation combination, and 

deliberately ignore the problem of finding witnesses. With respect to Whitby et al.'s 

proposal [4], our proposal extends binary ratings systems to multinomial outcome 

systems using the Dirichlet distribution and takes self experience into account to 

calculate trust. Whitby et al.’s proposal is a memoryless system1, which calculates the 

combined rating based on current recommendations only, while entities in our trust 

model maintain a set of weights correlated with past recommendations, and past 

experience. 

                                                 
1 In a time-domain system with input x and output y, if the output y at each time depends only on the input 

x at that time, then such systems are said to be memoryless because you do not have to remember previous 

values of the input in order to determine the current value of the output [14]. 
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2.4 Review of methods for decision making 

Even though trust greatly reduces the complexity of society, we seldom make 

decisions solely based on the trust value. Rather, we believe that we typically make 

decisions based on utility we expect to gain. Decision making is often a question of 

selecting the optimal choice among a number of alternatives. It is therefore important to 

understand how different alternatives are evaluated in order to determine which is 

optimal. This means that for each alternative, a utility must be defined so that the 

alternative with the highest utility can be chosen. These kinds of approaches have been 

used in different areas. We provide an overview of some significant work in the 

following. 

Expected Utility Theory (EUT) [31] states that the decision maker (DM) chooses 

between risky or uncertain prospects by comparing their expected utility values, i.e., the 

weighted sums obtained by adding the utility values of outcomes multiplied by their 

respective probabilities. The most popular expected utility function is the linear 

compensatory model in which preference for a product or service is represented by 

where x∑
=

=
K

k
jkkj ywx

1
j is the preference for a product or service j, yjk is the amount of 

attribute k in product or service j, and wk is the importance weight assigned to attribute k 

[20]. The utility captures the DM’s preference. The DM should choose the product or 

service that maximizes the expected utility. 

In quality of service negotiation [5], a user satisfaction function plays a similar role to 

the utility function. The overall satisfaction of a product or service is expressed as a 

function of the individual component satisfaction si. That is Stotal=f(s1,s2,…,sn). Desirable 

properties of f(.) include: 

1. If si is much smaller than each of others {s1,s2,…,sn}, then Stotal must be dominated by 

si. 

2. Stotal=f(s,s,…,s) must be equal to s which allows f(s1,s2,…,sn) to be scaled. 

One relationship that satisfies these requirements is 
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Note that this formula is similar to the formula for the equivalent resistance of parallel 

resistors, except that the result is multiplied by n so that requirement 2 is satisfied [5]. An 

entity will choose the product or service with the maximum satisfaction value Stotal. 

We believe that every trust model faces the decision making problem. Unfortunately, 

not every trust model explicitly points out the decision making process partly because of 

some of them are quite simple and straightforward. We provide an overview of some 

trust models in the following: 

In Marsh [36], the decision making is simplified to the decision of cooperation. 

Having determined the trust in β, α can consider whether or not to cooperate. In other 

words, does α trust β enough to cooperate with her/him? To determine the answer to this 

question, Marsh introduces the concept of threshold values for trust. If the trust is above 

a cooperation threshold, cooperation will occur. If not, cooperation will not occur [36]. 

Marsh [36] points out that this view of cooperation may seem somewhat simplistic; 

however, it presents a straightforward notion of cooperation. In addition, it provides an 

interesting view of the problem which is not so complex as to put substantial overhead 

onto an implementation. In his later section, Marsh points out that the cooperation 

threshold is a subjective measure. 

In the market simulation of Whitby et al. [4], the market consists of several sellers and 

buyers who trade in a single commodity. At the end of each round, the buyers and sellers 

adapt their behavior based on their previous rounds. Seller behavior is determined by two 

parameters, a selling price and an honesty level. Once the seller has committed to a 

transaction, it will either ship the item with a probability equal to the honesty level, or it 

will not ship the item. Thus the seller's transaction gain is different for an honest and a 

dishonest transaction. The seller will adapt its price and honesty level to maximize its 

gain. The following is the buyer behavior. For a transaction with a given seller S, the 

buyer B expects to receive the expected gain G(B,S). The buyer will search for the seller 

that maximizes G(B,S) with a probability equal to the search propensity. The rest of the 

time the buyer will transact with the first seller whose price does not exceed the buyer's 

utility (All buyers receive the same utility from an item). 
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Jøsang [6] describes subjective logic as a logic which operates on subjective beliefs 

about the world, and uses the term opinion2 to denote the representation of a subjective 

belief. He proposes that the opinions can be ordered according to probability expectation 

value, but additional criteria are needed in case of equal probability expectation values. 

Jøsang [6] defines the following order of opinion: 

1. The opinion with the greatest probability expectation3 is the greatest opinion. 

2. The opinion with the least uncertainty is the greatest opinion. 

3. The opinion with the least relative atomicity4 is the greatest opinion. 

The first criterion is self evident. The second is less so, but it is supported by 

experimental findings [6]. Jøsang admits that the third criterion is more an intuitive guess. 

Several applications of these criteria are illustrated by examples. 

3 Mathematical tools 

In this chapter, several mathematical tools will be briefly introduced. These tools are 

used in our trust model. Each tool is self contained and independent. 

                                                 
2 In Jøsang [6], let Θ be a binary frame of discernment with two atomic states x and ¬x. Let b(x), d(x), u(x), 

and a(x) represent the belief, disbelief, uncertainty and relative atomicity functions on x in 2Θ respectively. 

Then the opinion about x, denoted by wx, is the tuple defined by: 

wx≡(b(x),d(x),u(x),a(x)). 
3 In Jøsang [6], the probability expectation is Θ

Θ ∈=∑ 2  ,)/()()( yyxaymxE
y

 

belief function is Θ

⊆
Θ ∈=∑ 2,  ,)()( yxymxb

xy

 

disbelief function is  Θ

=∩
Θ ∈= ∑ 2,  ,)()(

0

yxymxd
xy

uncertainty function is  Θ

∉
≠∩

Θ ∈= ∑ 2,  ,)()(
0

yxymxu

xy
xy

4 In Jøsang [6], relative atomicity: Θ⊂
∩

= Θ ,2,  where
||

||)/( yx
y

yxyxa is a frame of discernment. 

A frame of discernment delimits a set of possible states of a given system, exactly one of which is assumed 

to be true at any one time. The relative atomicity is a value in the range [0,1]. 
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3.1 Bayesian estimation 

3.1.1 Introduction 

Bayesian estimation is a popular representation for encoding uncertain expert 

knowledge in expert systems [13]. Bayesian statistics provide a conceptually simple 

process for updating uncertainty in the light of evidence. Initial beliefs about some 

unknown quantity are represented by a prior distribution. The prior distribution and 

information in the data are then combined to obtain the posterior distribution for the 

quantity of interest. The posterior distribution expresses the revised uncertainty in light 

of the data; in other words, an organized appraisal after consideration of previous 

experience [35].  

Compared with classical approaches, Bayesian methods have at least the following 

advantages [13]: 

Bayesian statistical techniques facilitate the combination of domain knowledge and 

data. Anyone who has preformed a real-world analysis knows the importance of prior or 

domain knowledge, especially when data is scarce or expensive. The prior knowledge 

and data can be combined with well-studied techniques from Bayesian statistics [13]. 

Bayesian methods offer an efficient and principled approach for avoiding the over 

fitting of the data - it models the training sequences very well, but will not fit other 

sequences from the same family. This is particularly likely if there are few training 

sequences. To avoid this problem a regularizer can be used, and in Bayesian methods it 

is tightly connected with the prior distribution [33].  There is no need to hold out some of 

the available data for testing. Using the Bayesian approach, models can be "smoothed" in 

such a way that all available data can be used for training [13]. 

The mathematical analysis leading to the expression for posterior distribution can be 

found in many text books and reports on probability theory, such as Heckerman [13], and 

we only present the results here. If the problem is a binomial one, in which only two 

mutually exclusive states exist, the Beta distribution is used. We discuss the Beta 

distribution in Section 3.1.2. If the problem is a multinomial one, in which r (r>2) 
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mutually exclusive states exist, the Dirichlet distribution is used. We discuss the 

Dirichlet distribution in Section 3.1.3. 

We use a car wash problem to illustrate the Bayesian approach of learning with data. If 

we have the car washed by the selected car wash, the outcome will be either “good” or 

“bad”. Suppose we have the car washed n times, from the n observations, we want to 

estimate the probability of outcome “good” on the n+1th car wash. 

In the classical analysis of this problem, we 5  assert that there is some physical 

probability of outcome “good”, which is unknown. This classical probability is the 

physical property of the world (e.g., the probability that the outcome will be “good”) [13]. 

A commonly-used estimator of classical probability is the maximum-likelihood (ML) 

estimator, which selects the probability θ using the following equation: 

θML=g/n (1)
where g represents the number of outcome “good” in the n observations. θML then is used 

to estimate the probability of outcome “good” on the n+1th car wash [13]. 

In the Bayesian approach, we6 also assert that there is some physical probability of 

outcome “good”, but we encode our uncertainty about this physical probability using 

(Bayesian) probabilities, and use the rules of probability to compute the probability of 

outcome “good” on the n+1th car wash [13]. A Bayesian probability is a property of the 

person who assigns the probability (e.g., your degree of belief that the outcome will be 

“good”). In general, the process of measuring a degree of belief is commonly referred to 

as a probability assessment [13]. Unlike the classical probability, the Bayesian 

probability is subjective. We will show how to calculate the Bayesian probability in the 

following sections. 

3.1.2 Beta distribution 

In this section, we explain the Bayesian analysis of this car wash problem. It is a 

binomial problem with two states: “good” and “bad”. We denote a variable by an upper-

                                                 
5 We refer to these analysts as frequentists 
6 We refer to these analysts as subjectivists 
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case letter (e.g. X,Y,Xi,Θ), and the state of a corresponding variable by that same letter in 

lower case (x,y,xi,θ). We use p(X=x|ξ) (or p(x|ξ) as a shorthand) to denote the probability 

that X=x for a person7 with state of information ξ. We also use p(x|ξ) to denote the 

probability distribution for X [13]. 

We define Θ to be a variable8 whose values θ correspond to the possible true values of 

the physical probability [13]. We refer to θ as a parameter. We express the uncertainty 

about Θ using the probability density function p(θ|ξ) which represents the probability 

that Θ has the value θ given ξ . In addition, we use Xi to denote the variable representing 

the outcome of the i-th observation, i=1,…,n+1, and D={X1=x1,…,Xn=xn} to denote the 

set of observations. Thus, in Bayesian terms, the car wash problem reduces to computing 

p(xn+1|D, ξ) from p(θ|ξ) [13]. 

Returning to the car wash problem, we9 use Bayes' rule10 to obtain the probability 

distribution for Θ given observation D and background knowledge ξ [13]: 

)|(
),|()|(),|(

ξ
ξθξθξθ

Dp
DppDp =  (2)

where  

p(D|ξ) = ∫p(D|θ,ξ)p(θ|ξ)dθ. (3)
Next, we expand the term p(D|θ,ξ). Both Bayesians and classical statisticians agree on 

                                                 
7 Note Bayesian probability is subjective. 
8 In Heckerman [13], “Bayesians typically refer to Θ as an uncertain variable, because the value of  Θ is 

uncertain. In contrast, classical statisticians often refer to Θ as a random variable. In this section, we refer 

to Θ and all uncertain/random variables simply as variables.” 
9 Actually the probability belongs to the person with state of information ξ. For simplicity, we introduce 

Bayesian estimation in the first person. 
10 A theorem in probability theory named for Thomas Bayes (1702-1761). According to wikipedia, Bayes’ 

theorem (Bayes’ rule) is a relation among conditional and marginal probabilities. It can be viewed as a 

means of incorporating informationm, from an observation, for example, to produce a modified or updated 

probability distribution. It can be restated as
)(

)()|()|(
BP

APABPBAP = . The term P(A) is called the 

prior probability of A. P(A) also is the marginal probability of A. The term P(A|B) is called the posterior 

probability of A, given B. The term P(B|A), for a specific value of B, is called the likelihood function for A 

given B and can also be written as L(A|B). P(B) is the marginal probability of B. 
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this term: it is the likelihood function for binomial sampling [13]. In particular, given the 

value of Θ, the observation Xi in D are mutually independent, and the probability of 

outcome “good” on any one observation is θ (the probability of outcome “bad” is 1 - θ). 

Therefore, the likelihood function p(D|θ,ξ) is given by 

p(D|θ,ξ)= θg(1- θ)b (4)
where g and b are the number of outcome “good” and “bad” observed in observation D, 

respectively. Consequently, Equation 2 becomes [13]: 

)|(
)1()|(),|(

ξ
θθξθξθ

Dp

bgpDp −
=  

(5)

The probability distributions p(θ|ξ) and p(θ|D,ξ) are commonly referred to as the prior 

and posterior for Θ, respectively. The quantities g and b are said to be sufficient 

statistics11 for binomial sampling, because they provide a summarization of the data that 

is sufficient to compute the posterior from the prior [13]. Finally, we average over the 

possible values of Θ (using the mathematical expectation of θ) to determine the 

probability that the outcome of the n+1th car wash will be “good” [13]: 

p(Xn+1=“good”| D,ξ)= ∫p(Xn+1=“good”|θ,ξ)p(θ|D,ξ)dθ 

= ∫θp(θ|D,ξ)dθ≡Ep(θ|D,ξ)(θ) 

(6)

where Ep(θ|D,ξ)(θ) denotes the expectation of θ with respect to the distribution p(θ|D,ξ). 

In order to get the posterior distribution p(θ|D,ξ), we need a method to assess the prior 

distribution p(θ|ξ) for Θ. A common approach, usually adopted for convenience, is to 

assume that this distribution is a beta distribution [13]: 

                                                 
11 In Benjamin Yakir [7], “let X denote a random variable (or vector) whose distribution depends on a 

parameter θ∈Θ. A real valued (or vector valued) function T of X is said to be sufficient if the conditional 

distribution of X, given T=t, is independent of θ (a.s., for all θ∈Θ).” According to About [2], the definition 

is as follows: “Suppose one has samples from a distribution, does not know exactly what that distribution 

is, but does know that it comes from a certain set of distributions that is determined partly or wholly by a 

certain parameter, q. A statistic is sufficient for inference about q if and only if the values of any sample 

from that distribution give no more information about q than does the value of the statistic on that sample. 

E.g. if we know that a distribution is normal with variance 1 but has an unknown mean, the sample average 

is a sufficient statistic for the mean.” 
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where αg>0 and αb>0 are the parameters of the beta distribution, α=αg+αb, and Γ(.) is the 

Gamma function12 . The quantities αg and αb are referred to as hyperparameters to 

distinguish them from the parameter θ [13]. The quantities αg and αb determine the 

strength of the prior belief [33]. We discuss the strength of the prior belief in Section 

4.3.4. By Equation 5, the posterior distribution will also be a beta distribution [13]: 
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(8)

We say that the set of beta distributions is a conjugate family of distributions for 

binomial sampling. Also, the expectation of θ with respect to this distribution has a 

simple form [13]: 

Ep(θ|D,ξ)(θ)= ∫θBeta(θ|αg+g,αb+b)dθ=(αg+g)/(α+n) (9)
Hence, given a beta prior, we have a simple expression for the probability of outcome 

“good” on the n+1th car wash [13]: 

n

gg
DpEDgoodnXp

+

+
===+ α

α
θξθξ )(),|(),|""1(  

(10)

Assuming p(θ|ξ) is a beta distribution, it can be assessed in a number of ways, among 

which Heckerman [13] introduces two assessment methods: imagined future data and 

equivalent samples. In this thesis, the prior is tightly connected with the initial situational 

trust, which can be mapped from general trust or basic trust. We discuss how to assess 

the prior from the initial situational trust in Section 4.3.4. 

We give an example to illustrate the Bayesian estimation. Suppose that 7 outcomes 

“good” have occurred in 10 previous car washes, Alice wants to estimate the probability 

of outcome “good” on the 11th car wash. Suppose that Alice’s prior belief in outcome 

“good” occurring in each car wash is Beta(1,1). Alice has the following estimation 

%67
3
2

102
71)""11( ≈=

+
+

== goodXP  (11)

                                                 
12 . If x is an integer n=1,2,3,…, then Γ(n)=(n-1)!. ∫

∞ −−=Γ
0

1)( dtetx tx
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In closing this section, we give several examples of beta distribution in Figure 1 (refer 

to Appendix D.1  for MATLAB code). To illustrated the result of the Bayesian 

estimation p(Xn+1=“good”|D,ξ)= (αg+g)/(α+n), we give the parametric mesh in Figure 2 

(refer to Appendix D.2  for MATLAB code). 

 

Figure 1: Beta distributions 

 

Figure 2: Bayesian estimation 
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3.1.3 Dirichlet distribution 

In multinomial sampling, the observed variable X is discrete, having r (r>2) possible 

states x1,…,xr. The likelihood function is given by [13] 

p(X=xk|θ,ξ)=θk    k=1,…,r (12)

where θ={θ1, θ2,…, θr} are the parameters (the parameter θ1, can be given by 1- θ2 …- θr). 

The parameters correspond to physical probabilities of x1,…,xr. The sufficient statistics 

for observation data set D={X1=x1, …,Xn=xn} are N={n1,…nr}, where nk (k=1,…,r) is the 

number of times X=xk in D which consists of n independent identically distributed 

random outcomes. Here ξ is the background knowledge [13]. In Heckerman [13], the 

simple conjugate prior used with multinomial sampling is the Dirichlet distribution13: 

∏
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where α = ∑αk and αk>0, k=1,…,r and Γ(.) is the Gamma function. The quantities 

α1,…,αr are referred to as hyperparameters to distinguish them from the parameter 

θ={θ1, θ2,…, θr}. Following the similar process in the previous section, the posterior 

distribution is p(θ|D,ξ)=Dir(θ|α1+n1,…,αr+nr). Techniques for assessing the prior beta 

distribution, including the methods of imagined future data and equivalent samples, can 

also be used to assess prior Dirichlet distributions [13]. In this thesis, the prior is tightly 

connected with the initial situational trust, which can be mapped from general trust or 

basic trust. We discuss how to assess the prior distribution from the initial situational 

trust in Section 4.3.4. Given this conjugate prior and data set D, the probability 

distribution for the next observation is given by 

p(Xn+1=xk|D,ξ) = Ep(θ|D,ξ)(θk) = ∫θkDir(θ|α1+n1,…,αr+nr)dθ 
= (αk+nk)/(α+n). 

(14)

Another important quantity in Bayesian analysis is the marginal likelihood or evidence 

p(D|ξ). In this case, we have [13] 

∏
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13 The Beta distribution is a special case of the Dirichlet distribution in binomial sampling (r=2). 
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We note that the explicit mention of the state of knowledge ξ is useful, because it 

reinforces the notion that probabilities are subjective [13]. In the case r=2, the above 

analysis becomes equivalent to the case discussed in Section 3.1.2. 

3.2 The Weighted Majority Algorithm 

3.2.1 Introduction 

The Weighted Majority Algorithm [27] studies the construction of prediction 

algorithms in a situation in which a learner faces a sequence of trials, with a prediction to 

be made in each, and the goal of the learner is to make few mistakes. The Weighted 

Majority Algorithm is interested in the case that the learner has reason to believe that one 

of some pool of known algorithms will perform well, but the learner does not know 

which one [27].  

The Weighted Majority Algorithm (WMA) [27] deals with on-line prediction 

algorithms that learn according to the following protocol. Learning proceeds in a 

sequence of trials. In each trial, each algorithm of the pool makes a prediction and these 

predictions are fed to the master algorithm. The master algorithm then makes its 

prediction and receives a correct label, which it passes to the whole pool. In the update 

step, each algorithm's weight is multiplied by some factor that depends on its prediction 

in this trial [27]. 

WMA aims to design a master algorithm that uses the predictions of the pool to make 

its own prediction. Ideally the master algorithm should make not many more mistakes 

than the best algorithm of the pool, even though it does not have any a priori knowledge 

as to which of the algorithms of the pool make few mistakes for a given sequence of 

trials [27]. 

Littlestone and Warmuth [27] give the following definition of WMA: 

Weighted Majority Algorithm (WMA): Initially a positive weight is associated 

with each algorithm (function) of the pool. (All weights are initially one unless 

specified otherwise.) Algorithm WMA forms its prediction by comparing the total 

weight q0 of the algorithms of the pool that predict 0 to the total weight q1 of the 
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algorithms predicting 1. WMA predicts according to the larger total (arbitrarily in 

case of a tie). When WMA makes a mistake, the weights of those algorithms of the pool 

that disagreed with the label are each multiplied by a fixed β such that 0≤β<1. 

Note that the predictions of the algorithms in the pool and the master algorithm are all 

binary (that is, in {0,1}). If WMA is applied to a pool of functions with β=0 and the 

initial weights equal, then it is identical to the Halving Algorithm [27]. If β>0, the WMA 

gradually decreases the influence of functions that make a large number of mistakes and 

gives the functions that make few mistakes high relative weights. No single mistake can 

eliminate a function [27]. In this thesis, we assume that sequences of trials, the pool of 

functions, and labels are all finite. 

Littlestone and Warmuth [27] proved that after each trial in which a mistake occurs the 

sum of the weights is at most u times the sum of the weights before the trial, for some 

u<1. In trials where no mistake occurs, the total weight may only decrease. Thus 

winit×um≥wfin must hold, where m is the number of mistakes of WMA. This implies that 

m is at most
uw

w

fin

init 1log/log . In the proof, Littlestone and Warmuth [27] assume 

u=(1+β)/2. Note that winit is the total initial weight of all algorithms in the pool and wfin 

is the total final weight after the given sequence of trails14. 

From the above results, Littlestone and Warmuth [27] give the following corollary: 

Corollary 1: Assume that A is a pool of n prediction algorithms and that mi is the 

number of mistakes made by the i-th algorithm of the pool on a sequence S of 

instances with binary labels. Then WMA when applied to pool A with equal initial 

weights makes at most 

β

β

+

+

1
2log

1loglog imn
mistakes on the sequence S, for 1≤i≤|A|. 

For example, suppose that there is a pool of 6 prediction algorithms and that the best 
algorithm makes mi=20 mistakes on a sequence of 80 trials. Then by using corollary 1, 
we can estimate the upper bound of mistakes of WMA as follows (β=0.5): 

                                                 
14 The choice of base is not significant for logarithms in this section. For formulas consisting of ratios of 

logarithms, we assume that the same base is chosen for numerator and denominator [27]. 
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Furthermore, we plot the relationship between the upper bound of mistakes made by 

the master algorithm and the parameter β in Figure 3 (refer to Appendix D.3  for 

MATLAB code). 

 

Figure 3: The upper bound of mistakes 

3.2.2 WMA Continuous 

There is a variant of WMA called WMA Continuous (WMC). WMC allows the 

predictions of the algorithms of the pool and the master as well as the labels to be in 

[0,1], instead of being binary. WMC simply predicts with the weighted average of the 

predictions of the pool algorithms [27]. 

The term update-trial j refers to the j-th trial in which an update step occurs [27]. We 

assume that there are a total of t such trials. The master algorithm is applied to a pool of 

n algorithms, letting xi
(j) denote the prediction of the i-th algorithm of the pool in update-

trial j. Let λ(j) denote the prediction of the master algorithm in update-trial j, ρ(j) denote 
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the label of update-trial j, and w1
(j),…, wn

(j) denote the weights at the beginning of 

update-trial j. Consequently, w1
(t+1),…, wn

(t+1) denote the weights following the final trial. 

All initial weights w1
(1),…, wn

(1) are positive. The prediction of the master algorithm is 

λ(j) = ∑n
i=1 xi

(j)×wi
(j)/s(j)  where s(j)=∑n

i=1wi
(j). (16)

The prediction xi
(j) is multiplied by its relative weight wi

(j)/s(j), which represents the 

“belief” of the master algorithm in the prediction. We have s(1)=winit and s(t+1)=wfin. 

In WMC, the notion of mistake has to be replaced by a quantity that measures how far 

the prediction is from the correct label. In this thesis, we use the absolute loss [27]. If an 

algorithm predicts x in a trial with label ρ, then its loss in that trial is |x-ρ|; this definition 

applies both to algorithms in the pool and to the master algorithm. 

In an update step of WMC each weight wi
(j) is multiplied by some factor F that 

depends on β, xi
(j), and ρ(j): wi

(j+1)=F×wi
(j), where F can be any factor that satisfies 

|. )()(|)1(1
|)()(| jj

ixF
jj

ix
ρβ

ρ
β −−−≤≤

− (17)

The parameter β is the factor by which weights are multiplied and is always in the 

range [0,1). The parameter β measures how drastic the update is (the smaller β, the more 

drastic the update). For simplicity, we keep β constant for all trials [27]. 

Littlestone and Warmuth [27] give the following lemma [27]: 

Assume that wi
(i)>0 for i=1,…,n. Assume 0≤β<1, 0≤ρ(j)≤1, and 0≤xi

(j)≤1 for j=1,…,t 

and i=1,…,n. Assume wi
(j+1)≤wi

(j)(1-(1-β)| xi
(j)- ρ(j)|) for j=1,…,t and i=1,…,n. Then if β=0 

and |λ(j)- ρ(j)|=0 for some j in {1,…,t} then wfin=0. Otherwise 

∑
=

−−−≤
t

j

jj

initw
finw

1
|))()(|)1(1ln(ln ρλβ  

(18)

3.2.3 Similarity and distance 

For the binomial case, the prediction and label are scalars. The absolute loss in WMC 

is |x-ρ|. Because the sum of the probabilities of all mutually exclusive and collectively 

exhaustive events is one, we can assign the probability (1-x) to the negative event in the 

binomial case if the probability of the event is x. Therefore, for the scalar x, we can find a 
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corresponding 2-D vector x={x,1-x}, and for the scalar ρ, we can find a corresponding 2-

D vector ρ={ρ,1-ρ}. We now rewrite the absolute loss by using these two vectors as 

follows: 

2
||||  loss Absolute ρx −

=−= ρx  (19)

where |x- ρ| is the Euclidean distance. 

For the multinomial case, the prediction and label are multi-dimensional vectors. 

Intuitively, we use normalized Euclidean distance in multi-dimensional space to 

represent the absolute loss. Suppose prediction x and label ρ are r-dimensional vectors. 

The normalized Euclidean distance between x and ρ is 

2

)(

2
||loss Absolute

2
1∑ −

== = ii
r
i x- ρρx . 

(20)

Therefore the absolute loss is in the range [0,1], whatever the dimension of predictions 

and labels is. Please refer to Appendix A for details about the range of distance. 

There are several other possible distance metrics (e.g. Minkowski metrics, Clark's 

distance, Cosine distance). We explain some of them in Appendix A. 

4 A trust model with statistical foundation 

In this chapter we define a trust model with statistical foundation.. Such a foundation 

is intuitive and useful in many practical situations, as will be shown in Section 4.5 on 

“Decision making”. In this chapter, we focus on how to build trust from self experience. 

4.1 Trust representation 

One of the key issues for the design of trust model is how trust is represented, and how 

the effect of experiences is specified. Representations can be qualitative, using specific 

qualitative labels (or term structures), or quantitative, using numbers as a representation 

[11]. 

Qualitative trust representation is just sufficiently rich to specify a difference in 
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characteristics between slow and fast dynamics, but it is not rich enough to specify more 

subtle differences in characteristics [11]. Such a representation causes the loss of 

sensitivity and accuracy [36]. Once an entity is judged to be “Trustworthy”, then another 

entity that is more trustworthy, but not enough to be “Very Trustworthy”, suffers in the 

comparison [36]. 

In quantitative representation, trust is measured by a real value, which is bounded 

between lower and upper limits. Marsh [36] chooses to represent trust as a continuous 

variable over range [-1, 1). The value -1 is the lowest possible trust value: it represents 

blind distrust. The value +1 means blind trust. Any real number between -1 and 1 means 

conditional trust. The higher the trust value, the more trustworthy the entity is. However, 

entity-subjectivity in the use of values is a major problem. We face the problem “what 

does a trust of 0.5, or 50% mean? It is high or low”. Such a representation of trust 

introduces ambiguity into the model, as the semantics of trust are usually hard to 

represent as a single real value [3]. 

Trust is a very complex and multi-faceted thing, which is hard to represent as either a 

single quantitative value or some qualitative rating. In either qualitative or quantitative 

representation, trust is a scalar, which we believe could cause potential information loss 

[36] or ambiguity [3]. In this thesis, we propose that trust is the estimation of a 

probability distribution over possible outcomes of experiences. The space of possible 

outcomes usually depends on the context in which the trust model is used. This approach 

provides a statistical foundation to the trust model and allows its application to a variety 

of different usage scenarios. 

4.2 A model of the trusted entity 

Our trust model is based on a model of the trusted entity β15. We discuss the space of 

possible outcomes with respect to a service performed by β and then propose a stochastic 

model for β. 

                                                 
15 From the point view of the trusting entity α. 
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4.2.1 The space of possible outcomes 

Our trust model is based on an abstract model of the trusted entity. We assume that the 

trust concerns the execution of a certain action by the entity. In most cases, the execution 

of the action corresponds to a specific service that is provided by the trusted entity. There 

may be different outcomes of the action. The trust is concerned with some form of 

prediction of what the outcome will probably be. In the case of situational trust, we are 

concerned with a particular action in a certain situation; in the case of general trust, the 

action represents any action of the trusted entity that may be of interest [19]. 

It is important to identify the space of possible outcomes. This space determines the 

nature of the associated trust model. We note that the granularity of this space determines 

the precision with which any prediction of future behavior can be made. We give in the 

following some typical examples. 

(a) Discrete categories [19] 

In this case, the outcomes are classified into a finite set of categories. For instance, the 

eBay trust model foresees the three categories: “positive”, “neutral”, and “negative”. In 

the case of trust concerning the quality of the food in a restaurant, the categories may be 

“excellent”, “good”, “average”, “bad”, and “very bad”. The case of two-valued outcomes 

is a special case of discrete categories; here the outcomes are classified into two 

categories, which may be called “good” and “bad”. 

While in the above examples, the different categories were ordered according to some 

intuitive “goodness” relationship (“good” being better than “average”, for instance), 

there are cases in which such an ordering does not necessarily exist. We may consider 

the example where the outcomes are classified into the following categories: “normal: all 

options OK”, “option A failed”, and “option B failed”. Here it is not clear which of the 

last two categories would be better. 

(b) Numeric outcomes [19] 

There are many cases in which the outcome can be characterized by a numerical value. 

For instance, the trust may concern the response time of a Web server, or the delivery 

delay of a parcel delivery service. In these cases, we are interested in the delay for 

completing the action, and this delay may be measured in fractions of seconds, minutes, 
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or hours, depending on the precision that is reasonable for the application. In these cases, 

the number of different outcomes is in principle infinite. 

Other examples where the outcomes can be classified by a numerical value are the 

following: (1) What percentage of cost overruns can one expect in a construction 

contract? – or (2) What is the expected quality of a video obtained from a video-on-

demand service? 

(c) Multidimensional outcome characterization [19] 

In many situations, the outcome of the action of interest has several parameters that 

are important to consider. Each of these parameters can usually be characterized either 

by a value from discrete value space, or a numerical (integer or real) value. In this case, 

we say that the space of the possible outcomes is multi-dimensional (one dimension for 

each parameter). Here are two examples: 

(1) Restaurant service with several evaluation criteria: (i) quality of food, (ii) service, 

and (iii) environment. For each of these three criteria, the restaurant may be classified 

into a certain number of discrete values, such as “excellent” down to “very bad”. 

Therefore, the outcome of a restaurant experience may be classified as a point in this 

three-dimensional space, where each coordinate in this space is defined by a value 

between “excellent” and “very bad”. 

(2) Multimedia presentation quality: As explained in [5] and [1], the quality of a 

multimedia presentation may be characterized by three values: (i) frame rate (in video 

frames per second), (ii) resolution (number of pixels within a frame), and (iii) color 

quality (number of colors distinguished per pixel). Therefore, the outcome of a video 

presentation obtained from a video-on-demand service may be characterized by three 

numerical values corresponding to these three quality of service parameters.  

4.2.2 A stochastic model of the trusted entity 

We assume that the trusted entity behaves like a stochastic process, in the sense that 

the outcome of an action of interest cannot be predicted exactly, that the outcome of one 

execution of an action of interest is statistically independent of the outcome of previous 

executions of that action, and that, over the long run, the probability that the outcome for 
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the next execution of the action will be a particular point within the space of possible 

outcomes is described by a probability distribution, which we call the outcome 

distribution of the trusted entity, and which we represent by Dβ. The value of Dβ for a 

particular outcome x є X (where X is the space of possible outcomes) is written as Dβ(x). 

The outcome distribution is a distribution over the space of possible outcomes. Therefore 

the sum over all possible outcomes of the outcome distribution must be equal to one. 

In the case of discrete outcome spaces, one usually does not make any assumptions 

about relationships between the outcome probabilities for different outcomes (except that 

they must sum to one). However, in the case of numerical outcomes, one may introduce 

additional assumptions. For instance, in Figure 4, a Gaussian outcome distribution is 

assumed, and the parameters of the Gaussian distribution are determined from a 

histogram of the outcomes observed during multiple experiments [19]. 

 

Figure 4: The Gaussian outcome distribution [19] 

4.3 Building trust from self experience 

We now define trust and propose a model to build trust from prior experiences. For 

this section, a formal analysis of the dependency of trust on self-experiences will be the 

central focus. In this section, we explain how to apply Bayesian estimation to our trust 

model. Our approach involves two major steps: (1) setting initial situational trust and 

prior hyperparameters; (2) building trust from self experience. 
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4.3.1 Definition of trust 

Definition of trust: The trust of an entity α in the outcome of an action of entity β is 

an estimation of the outcome distribution Dβ for the execution of the action by entity β. 

The basic mechanism for building trust is by experience, that is, by observing the 

execution of the action of interest by the entity β a certain number of times. The entity 

predicts the distribution of the next observation based on self experience using the 

Bayesian estimation. The Bayesian estimation and the mathematical analysis leading to 

the expression for posterior distribution can be found in Chapter 3, and we only present 

the results here. Let us assume that the space of possible outcomes X is discrete and finite 

and that n observations have been made, where the outcome of the i-th observation was 

Xi. 

We assume that the observed variable X is discrete; having r (r≥2) possible states 

x1,…, xr. The simple conjugate prior p(θ|ξ) used with multinomial sampling16 is the 

Dirichlet distribution [13]: 

∏
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(21)

where α = ∑αk and αk>0, k=1,…, r. The quantities α1,…, αr are referred to as 

hyperparameters to distinguish them from the parameter θ={θ1, θ2,…, θr} (the parameter 

θ1 can be given by 1 -θ2…-θr), which correspond to physical probabilities of x1,…, xr. 

Suppose the trusting entity has experience denoted by an observation data set 

D={X1=x1,…,Xn=xn} for which the sufficient statistics are N={n1,…,nr}, where nk is the 

number of times X=xk in D which consists of n independent identically distributed 

random outcomes. Here ξ is the background knowledge17. Given conjugate prior p(θ|ξ) 

and data set D, the posterior distribution p(θ|D, ξ) and the probability distribution for the 

next observation p(Xn+1=xk|D, ξ) are given by 

                                                 
16 The Beta distribution is a special case of the Dirichlet distribution in binomial sampling. Therefore we 

only use the Dirichlet distribution in this section. 
17 The background belongs to the trusting entity (entity α). The prior and posterior distributions also belong 

to entity α. 
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p(θ|D, ξ)=Dir(θ|α1+n1,…, αr+nr) (22)
p(Xn+1=xk|D,ξ)=Ep(θ|D,ξ)(θk)=∫θkDir(θ|α1+n1,…,αr+nr)dθ=(αk+nk)/(α+n) (23)

Then the estimation of Dβ, the trust of the observing entity α, is given by the formula 

Tα(β,δ)(xk) = p(Xn+1=xk|D,ξ) = (αk+nk)/(α+n). (24)

We note that the explicit mention of the state of knowledge ξ is useful, because it 

reinforces the notion that probabilities are subjective. When set r=2, the results are 

suitable for binomial sampling. 

For simplicity, we sometimes use Ep(θ|D, ξ)(θ) (or E(θ) for short) to denote situational 

trust Tα(β,δ)(x). Note that Ep(θ|D, ξ)(θ) is an r-dimensional vector. For each xk, θk, we have 

Tα(β,δ)(xk) = E(θk) where k=1,…,r. 

In the case that the space of possible outcomes includes a dimension with a numerical 

coordinate, the set of possible outcomes becomes infinite. In this case, the above simple 

average value calculation is not possible. Instead, the numerical coordinate is usually 

partitioned into a discrete number of intervals, as shown in Figure 4. Each interval is then 

treated like a discrete value and the above formula can be applied. If the model of the 

trusted entity includes an assumption about the functional form of the outcome 

distribution function Dβ then the trust should be of the same form, and the parameters of 

this function should be adjusted to best fit the experimental data [19]. 

Instead of keeping in memory all previous experimental outcomes, the trusting entity 

may use sufficient statistics for the previous outcomes. For calculating the trust, the 

trusting entity keeps in memory the current sufficient statistics N={n1,…,nr}. When a new 

experience yielding outcome xk is observed, the sufficient statistics N will be updated as 

follows: 

nk = nk+1 

n=n+1 
(25)

The value of Tα(β,δ) can be calculated as follows: 

Tα (β,δ) (xi) = ( αi+ni)/(α+n)  for i=1,…,r (26)
 

In our trust model entities do not maintain a database of specific trust statements in the 

form of “α trusts β with respect to situation δ”. Instead, at any given time, the 

trustworthiness of a particular entity is obtained by summarizing the relevant subset of 

recorded experiences [3]. 
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4.3.2 Considering trusted entities with evolving performance 

If it can be assumed that the performance of the trusted entity is not constant, but 

evolving over time, then the basic assumption about a given outcome distribution for the 

actions of the entity, valid over all times, is not true any more. In this case, we must take 

into account that the outcome distribution of the trusted entity evolves over time. If the 

trusting entity knows the speed of this evolution, possibly defined by a given 

characteristic time delay, then the trusting entity may include in the trust calculation only 

recent experiments not older than the characteristic time delay. 

It is also possible to give different weights to the different experiments, either 

according to their age or their order. It is desirable to give greater weight to more recent 

experiences18. This can be achieved by introducing a forgetting factor γ where 0≤γ≤1. 

When a new experience yielding outcome xk is observed, the sufficient statistics N will 

be updated as follows: 

nk = nk×γ+1 

ni = ni×γ  for i=1,…r and i≠k 

n=n×γ+1 

(27) 

where the value of γ determines the weight of the past experience compared with the 

most recent experience. We note the largest possible n is 1/(1-γ). Please refer to appendix 

C for details. The values of Tα(β,δ) can be calculated as follows: 

Tα (β,δ)(xi) = ( αi+ni)/(α+n)    for i=1,…,r (28) 
 

4.3.3 States and dimension independence 

In many situations, the space of the possible outcomes is multi-dimensional (one 

dimension for each parameter). Consider the restaurant service with three evaluation 

criteria: (i) quality of food, (ii) service, and (iii) environment. For each of these three 

                                                 
18 It may be generally true, but in the context of trust not always. Entities may be as likely to give more 

weight to “significant” experiences. E.g. if I am risk averse I may put a very high value on bad experiences 

even if they have not happened for awhile. 
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criteria, the restaurant may be classified into four values, such as “excellent”, “good”, 

“bad”, and “very bad”. Therefore, the outcome of a restaurant experience may be 

classified as a point in this three-dimensional space, where each coordinate in this space 

is defined by a value between “excellent” and “very bad”. For example, one possible 

outcome (state) is x=(“Quality of food”=“excellent”, “service”=“good”, 

“environment”=“bad”). The concept of the multidimensional space is useful because it 

makes the abstract outcome space easy for human to understand. However, the Bayesian 

estimation methods do not need such concept of multidimensional space. What Bayesian 

estimation needs is just the definition of this space of outcome states. The Bayesian 

estimation does not need to make any further assumptions about the components of this 

outcome x.  

Besides the ease to understand, the concept of multidimensional space has another 

potential benefit: ease to compute. Following the restaurant example, we assume the 

three evaluation criteria are mutually independent; the number of outcome state for each 

dimension is four. In the case of the independent multidimensional outcome space, 

Tα(β,δ)(xk)=P(xk)=Пm
i=1P(oi) k=1,…,r where P(xk) is the probability of outcome xk, xk= 

(o1,o2,…,om) and oi is the outcome in i-th dimension (in this case, each oi has four 

possible states, m is equal to three).  Here the marginal distribution of oi can be used 

instead of the joint distribution of xk because the dimensions are independent. The 

dimension independence can significantly reduce the computational complexity 

especially when the number of outcome states is large. For the example of the restaurant, 

the number of outcome states is r=43=64 and the dimension number is m=3. In some real 

situations, the number could be even larger. However, if we assume the evaluation 

criteria are mutually independent, the number of outcome states for each dimension is 

r=4, which is more manageable. For each dimension, the Bayesian estimation can be 

applied independently to get the marginal distributions P(oi). Then the joint distribution 

of xk can be calculated from the product of the marginal distributions P(oi). We note that 

all the examples in this thesis assume the dimension independence without notice. 
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4.3.4 Setting initial situational trust and prior hyperparameters 

The basic idea in this section is to let the conjugate prior match the initial situational 

trust, which can be set from general trust or basic trust. In the previous sections, we 

model trust Tα(β,δ)(x) as the distribution Dβ(x) over the space of possible outcomes X. In 

Section 4.4, we will propose a mapping function S(x) to set initial situational trust 

Tα(β,δ)(S(x)) from general trust Tα(β)(x) or basic trust Tα(x) with initial observation 

number Ninit. In this section, we assume that the initial situational trust as well as the 

initial observation number is known. For simplicity without loss of generality, we 

suppose there are r (r≥2) different outcomes x1,…, xr in this situation δ. In the Bayesian 

technique, the likelihood function is given by 

p(X=xk|θ, ξ) = θk,  k=1,…,r (29)
where θ={θ1, θ2,…, θr} are the parameters (the parameter θ1 can be given by 1 -θ2…-θr) 
which correspond to physical probabilities of x1,…, xr. The simple conjugate prior used 
with multinomial sampling is the Dirichlet distribution: 

∏
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where α = ∑αk = Ninit and αk>0, k=1,…,r. The hyperparameters α1,…, αr can be assessed 
as follows. 

Initial situational trust Tα(β,δ)(xk) = p(X=xk|θ, ξ) = θk= αk/α   k=1,…,r. (31)
Given these r equations, we can solve for α1,…, αr. The size of Ninit determines the 

strength of the prior beliefs. If this Ninit is small, such as 2, just a few observations will be 

enough to take over prior beliefs [33]. On the other hand, if the Ninit is large, such as 

1000, then on the order of 1000 observations will be needed to significantly make the 

posterior distribution differ from the prior beliefs [33]. When Ninit approaches 0, the 

prior distribution becomes noninformative (theoretically Ninit can be any positive real 

number). 

4.3.5 Example 

Following the restaurant example, we assume the evaluation criteria are mutually 

independent; the number of outcome states for each dimension is four. For each 
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dimension, the Bayesian estimation is applied independently. The final joint distribution 

of xk can be calculated from the product of the marginal distributions. We do not show 

the distribution of xk because it is very easy to calculate and it occupies lots of space. 

Suppose the trusting entity α has seven experiences (n=7) denoted by an observation 

data set D={X1=x1,…,X7=x7}. The sufficient statistics in each dimension for the data set 

are shown in Table 1.  

 Quality of food Service Environment 

excellent 5 2 3 

good 1 3 3 

bad 1 1 1 

very bad 0 1 0 

Table 1: Sufficient statistics in a restaurant based on seven experiences 

We assume the prior belief (hyperparameters) in each dimension in restaurant β as 

shown in Table 2 

 Quality of food Service Environment 

excellent 1 0 1 

good 1 1 0 

bad 0 1 0 

very bad 0 0 1 

Table 2: Prior belief in a restaurant 

At this point of time, Entity α can calculate the situational trust in each dimension in 

restaurant β as shown in Table 3 

Distribution T(o) Quality of food T1(o) Service T2(o) Environment T3(o) 

excellent 6/9 2/9 4/9 

good 2/9 4/9 3/9 

bad 1/9 2/9 1/9 

very bad 0 1/9 1/9 

Table 3: Situational trust in a restaurant based on seven experiences 

After entity α obtains another outcome such as X8= (“Quality of food”= “excellent”, 

“service”=“good”, “environment”=“bad”), the entity α updates his/her experience as 

shown in Table 4  
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 Quality of food Service Environment 

excellent 6 2 3 

good 1 4 3 

bad 1 1 2 

very bad 0 1 0 

Table 4: Sufficient statistics in a restaurant based on eight experiences 

With the updated experience, the entity α can calculate the new situational trust and 

obtain the following trust in each dimension (n=8) as shown in Table 5 

Distribution T(o) Quality of food T1(o) Service T2(o) Environment T3(o) 

excellent 7/10 2/10 4/10 

good 2/10 5/10 3/10 

bad 1/10 2/10 2/10 

very bad 0 1/10 1/10 

Table 5: Situational trust in a restaurant based on eight experiences 

4.4 Initial trust values 

In two cases, entity α needs to set his/her initial trust values in entity β. (i) When 

entities α and β have no previous relationship (in any situation) and entity α has no 

knowledge about entity β, then entity α needs to initialize his/her general trust and 

situational trust in entity β. (ii) When entities α and β have no previous relationship in a 

new situation but entity α has general trust in entity β, then entity α needs to initialize 

his/her new situational trust in entity β. To address these problems, a mapping between 

different spaces is needed. Mapping to initial trust for a particular entity or situation 

depends on the space of possible outcomes of that situation. 
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4.4.1 Mapping between spaces 

We focus on the following two mappings19: 

(i) Generalization mapping: from situational trust space to general trust space 

for the purpose of general trust update. We write G(x) for the outcome of 

general trust when the situational trust outcome is x. Using G(x) one can 

update his/her general trust Tα(β)(G(x)). Note that this kind of 

generalization mapping causes information loss since the general trust 

would be more “general” (abstract) in nature and the mapping is usually a 

many-to-one mapping, which implies that the number of discrete outcomes 

of general trust space must be no more than that of the situational trust 

space. An example of a mapping from the situational trust to the general 

trust is illustrated in the following Figure 5. 

 

Figure 5: Generalization mapping 

In this example, the entity α will map his/her situational trust to general trust by 

defining the mapping G(x): 

• outcomes “average” or higher in situational trust map to outcome 

“Good” in general trust  

• outcomes “Bad” or lower in situational trust map to outcome “Bad” 

in general trust  

Note that the areas must be the same; that is, Tα(β)(G(x)) = Tα(β,δ)(x).  Thus 

 

                                                 
19 It is also possible to map the sufficient statistics between different spaces. 
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Tα(β)(“Good”) = Tα(β,δ)(“Excellent”)+ Tα(β,δ)(“Very Good”)+ 

Tα(β,δ)(“Good”) + Tα(β,δ)(“Average”) = 80%, and 

 

Tα(β)(“Bad”)    = Tα(β,δ)(“Bad”)+ Tα(β,δ)(“Very Bad”) = 20%. 

 

(ii) Specialization mapping: from basic trust space to general trust space and 

from general trust space to situational trust space for the purpose of setting 

initial trust values. We write S(x) for the outcome of situational trust when 

the general trust outcome is x. We also write S(x) for the outcome of 

general trust when the basic trust outcome is x. Using S(x) one can set 

initial situational trust Tα(β,δ)(S(x)) and initial general trust Tα(β)(S(x)). 

Note that the specialization mapping is the reverse process of the 

generalization mapping. It usually is a one-to-many mapping. An example 

of a mapping from the general trust to the situational trust is illustrated in 

the following Figure 6. 

 

Figure 6: Specialization mapping 

In this example, the entity α will map his/her general trust to situational trust by 

defining the mapping S(x): 

• outcome “Good” in general trust maps to outcomes “average” or 

higher in situational trust 

• outcome “Bad” in general trust maps to outcomes “Bad” or lower in 

situational trust 

Note that the areas must be the same; that is, Tα(β)(x) = Tα(β,δ)(S(x)).  Thus 
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Tα(β)(“Good”) = Tα(β,δ)(“Excellent”)+ Tα(β,δ)(“Very Good”)+ 

Tα(β,δ)(“Good”) + Tα(β,δ)(“Average”) = 80%, and 

 

Tα(β)(“Bad”)    = Tα(β,δ)(“Bad”)+ Tα(β,δ)(“Very Bad”) = 20%. 

 

This histogram is then the initial set of values for situational trust outcomes 

(i.e., n = Ninit) that will be updated over time as entity α has further interactions 

with service β.  

4.5 Decision making 

Our goal is to develop a general trust model that can be used for making rational 

decisions in order to make optimal choices. In other words, we believe that we should 

use trust to support decision making. We highlight the decision making process because 

trust is a very complex and multi-faceted thing and it is generally very hard to make 

decisions directly from trust. We believe that we typically make decision based on utility 

we expect to gain. In management and marketing, many utility models have been 

developed, while little has been done in combining utility models and trust models. In 

this section, we are going to develop several utility models in different contexts to see 

how our trust model can apply to these utility models. For this section the decision-

making is the focus. 

In this section, we apply our trust model to several utility models to show how our 

trust model can be used for rational decision making. For most economic scenarios, the 

highest expected current utility model [20] is appropriate. For some critical scenarios, the 

lowest expected failure rate model [28] is appropriate. For some service scenarios, the 

total satisfaction model [5] is appropriate. 

Based on our trust model and Expected Utility Theory (EUT), we propose the 

following: if entity α wants to use his/her trust for decision making, the entity should first 

establish the utility of the action of a trusted entity β for each possible outcome. We write 

Uα(x) for the utility when the outcome is x. Then it is clear that the expected utility 

obtained from the execution of an action by entity β for which the trust is Tα(β,δ) can be 
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calculated by the formula 

   Uα(β) =  ∑
∈

×
Xx

xUxT )())(,( αα δβ

In the case of multi-dimensional outcome spaces, the different dimensions may have 

their own utility mapping functions, and the overall utility may be the sum of the single-

dimension utilities, adjusted with weight factors for the different dimensions. We then 

get an analogous formula to the one given in [20]. If all dimensional outcomes are 

independent, then the above expected utility formula can be generalized to 

where is the expected k-th dimensional utility, is 

the subjective weight of the k-th dimension (we assume that the sum of all weights is 

equal to 1). 

∑
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×=
K
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We note that the latter formula corresponds to the formula for the expected utility 

quoted from [20] above. in our formula corresponds to the value y)()( βα
kU jk in the 

formula above. 

We give three examples of making decisions and choosing the utility mapping 

function Uα(x). 

(1) Consider the example of the restaurant service β. Entity α assumes that all three 

evaluation criteria are independent. Let us assume that entity α adopts the mapping 

functions of Table 6 and dimensional weights20 with the following values: W(1)  =  0.6;  

W(2)  =  0.3;  W(3)  =  0.1. 

Utility Mapping U(o) Quality of food U(1)(o) Service U(2)(o) Environment U(3)(o) 

excellent 5.6 3 2 

good 2.7 1 1 

bad 0 -0.5 0 

very bad -4 -2 -1 

Table 6: Utility mapping functions for the restaurant service 

The weighted “quality of food” dimension utility can be calculated using the trust 

values from Table 5 as follows: 

         U1= sum over all o in dimension “quality of food” of ( U(1)(o) * T1(o) * W(1) ) 

                                                 
20 Both the assignments of utility and dimensional weights are arbitrary in this example 
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              = ( 5.6 * (7/10) + 2.7 * (2/10) + 0.0 * (1/10) + (-4) * 0 ) * 0.6 = 2.676 

Similarly, the weighted “service” dimension utility U2 has the value 0.24, and the 

weighted “environment” dimension utility U3 has the value 0.1. Therefore the utility for 

entity α of this restaurant service β is Uα(β) = U1 + U2 + U3 = 2.676 + 0.24 + 0.1 = 

3.016 

Following the same process, entity α can calculate the utility of other restaurant 

services. Entity α would choose the restaurant service with the highest utility value. 

 

(2) Consider the example of multimedia presentations. Based on the multi-dimensional 

outcome space discussed at the end of Section 4.2.1, we could use the above formula to 

calculate the overall utility. However, Richards et al. [5] propose another formula. They 

call satisfaction sk what we call utility U(k), and they assume that the values of 

satisfaction range between zero (unacceptable quality) and one (ideal quality). Instead of 

the weighted summation formula above, they propose to calculate the overall satisfaction 

by ∑
=

=
K

k k
total s

KS
1

1/ . The reason for proposing this formula is the following argument: If 

the satisfaction for one dimension is zero, then the total satisfaction should be zero 

(which is not satisfied by our formula). Both formulae satisfy the following property: If 

the satisfaction for all dimensions has the same value, then the overall satisfaction has 

that same value. Richards' formula can be extended to include weights. 

Let us assume that entity α adopts the following satisfaction mapping functions in 

different dimensions as shown in Table 7, Table 8, and Table 9. 

Frame rate(F) F>25 20<F<25 10<F<20 F<10 

Satisfaction(U1) 1 0.8 0.6 0.3 

Table 7: Satisfaction in frame rate dimension 

Resolution(R) 640x480 352x240 160x120

Satisfaction(U2) 1 0.8 0.7 

Table 8: Satisfaction in resolution dimension 
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Color(C) C=216 C=28

Satisfaction(U3) 1 0.5 

Table 9: Satisfaction in color dimension 

Let us assume that entity α adopts the following situational trust in each dimension in 

the video-on-demand service provider β, as shown in Table 10 

Frame rate T1(o) Resolution T2(o) Color T3(o) 

F>30 2/10 640x480 7/10 C=216 4/10 

20<F<30 5/10 352x240 2/10 C=28 6/10 

10<F<20 2/10 160x120 1/10 N/A N/A 

F<10 1/10 N/A N/A N/A N/A 

Table 10: Situational trust in a video-on-demand service provider 

The “frame rate” dimension satisfaction can be calculated using the trust values from 

Table 10 as follows: 

         S1= sum over all o in dimension “frame rate” of ( U(1)(o) * T1(o) ) 

              =  1* (2/10) + 0.8 * (5/10) + 0.6 * (2/10) + 0.3 *(1/10) = 0.75 

Similarly, the “resolution” dimension satisfaction S2 has the value 0.93, and the 

“color” dimension satisfaction S3 has the value 0.7. Therefore the total satisfaction for 

entity α of this video-on-demand service provider β is Sα(β) = 3/(1/S1 + 1/S2 + 1/S3) ≈ 

0.78. 

Following the same process, entity α can calculate the utility of other video-on-

demand services. Entity α would choose the video-on-demand service with the highest 

total satisfaction value. 

 
 (3) Consider the previous example of restaurant service β. Entity α, this time, uses a 

failure probability model similar to failure rate as proposed in [28] for decision making. 

Entity α first maps the outcome space to a consideration space which consists of two 

outcomes, namely “success” and “failure”; for instance, we may assume that we have 

"failure" when the value of Uα(x) is less than zero. The service failure probability is the 

proportion of outcome “failure” and can be represented by ∑
=

=
"")(

))(,(
failurexU

f xTP
α

δβα . If the 

dimension independence is satisfied, we can define the dimension service failure 
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probability as the proportion of outcome "failure" in a 

dimension . The service failure probability can be represented 

by . This implies the assumption that if anyone of the dimensions 

fails, then the total service fails. The service with the lowest failure probability can be 

chosen. Note that one can consider this model as a special case of expected utility model 

in which the utility mapping has only two values, “success” and “failure”. 

∑
=

=
"")(

))(,(
failureoU

k
f

k

oTP
α

δβα

∏ −−= )1(1 k
ff PP

Let us assume that entity α adopts the utility mapping functions of Table 6 and the 

situational trust of Table 5. The “quality of food” dimension failure probability can be 

calculated as follows: 

         Pf
1= sum over all Tα(β,δ)(o) in dimension “quality of food” whose U(1)(o)<0 

              = 0 

Similarly, the “service” failure probability Pf
2 has the value 0.3, and the 

“environment” dimension failure probability Pf
3 has the value 0.1. Therefore the total 

service failure probability for entity α of this restaurant service β is 

Pf=1-(1- Pf
1) (1- Pf

2) (1- Pf
3)=1-(1-0)(1-0.3)(1-0.1)=0.37 

Following the same process, entity α can calculate the utility of other restaurant 

services. Entity α would choose the restaurant service with the lowest total failure 

probability. 

5 Dealing with recommendations 

5.1 Discussion 

While typically, the trust that a subject has is built up by his/her direct experiences, the 

subject may also rely on the experiences of another subject. The latter subject is called a 

recommender, and the information provided by the recommender to the former subject is 

called a trust recommendation. The recommendation may be based on direct experiences 

of the recommender, and also on the trust established by the recommender, possibly 
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through recommendations obtained from other third parties. 

Trust is based on a number of factors. Aside from the entity’s direct experiences, 

another important factor is the recommendations provided by other entities of society. 

For this section a formal analysis of the dependency of trust on recommendation will be 

the central focus. It is quite common in a society that an entity could get many 

independent recommendations from different entities. Some of these recommendations 

probably conflict with each other. To address the conflict, we propose a trust 

combination algorithm. A recommendation need not necessarily represent the real belief 

of the recommending entity. Therefore recommenders may lie or give out contradictory 

recommendations to different entities. 

How to find trustworthy recommenders is another issue. Yu and Singh [9] proposed an 

algorithm to find acyclic paths between a querying entity and recommenders. The 

number of possible paths is related to the connections between entities. If the entities are 

densely connected, the number of paths is quite large. If the entities are sparsely 

connected, the number of paths could be quite small or even zero. 

Yu and Singh [9] distinguish between two kinds of beliefs: local belief and total belief. 

An entity’s local belief about a correspondent is from direct experience with it and can 

be propagated to others upon request. An entity’s total belief (reputation) about a 

correspondent combines the local belief (if any) with testimonies received from any 

witnesses. Total belief can be used for deciding whether the correspondent is trustworthy. 

It is not necessary to ask for recommendations when the entity cumulates enough 

direct experience with certain entity in a given situation. However, it is very hard to 

determine whether it is enough or not. Here we propose that the number of direct 

experience larger than ConfidentCount is the right indicator of self confidence in statistic 

perspective. In other words, when entity α has ConfidentCount direct experiences with 

entity β in situation δ, entity α does not need to ask for recommendations for entity β in 

situation δ any more. However, entity α could ask for recommendations for entity β in 

situation δ for the purpose of verifying his/her recommenders. 

46 



  

5.2 Recommendation model 

In the terminology of statistics, unfair recommendations refer to abnormal, biased 

data. In the terminology of sociology or psychology, these unfair recommendations refer 

to malicious or subjective recommendations. In an online community where legitimate 

subjective differences may exist among entities, it will be very difficult or impossible to 

distinguish recommendation dispersion due to subjective differences from that which is 

due to malicious recommendations. In this thesis, we say a recommendation is unfair 

when the hyperparameters (including sufficient statistics and prior belief) in the 

recommendation differ from those for the observation from the point view of the 

recommender (also called malicious recommendations), and/or when the trust 

distribution of the recommendation is far from that of the requesting entity21 from the 

point view of the requesting entity (also called subjective difference). The requesting 

entity does not know exactly whether a single recommendation is fair or not, and the 

cause of each unfair recommendation. The requesting entity uses statistical analysis and 

machine learning algorithms to detect and avoid these likely unfair recommendations. 

Before we study the recommendation models22, we need to recall the definition of the 

utility mapping function U in the previous sections. The purpose of the utility mapping 

function is to map a multi-dimensional vector (trust, recommendation) to a scalar 

(utility), which makes it possible to sort according to a goodness relationship. Note that 

Ui is a subjective function which belongs to the recommender i. We denote by Ri the 

recommendation in the form of Ri={α1'+n1',…,αr'+nr'} where r≥2, {α1',…,αr'} represent 

the recommender's prior belief, and {n1',…,nr'} represent the recommender's past 

experience. We note that in this recommendation there is an imagined trust E(θi'), the 

expectation of θi' with respect to the distribution p(θi'|Di', ξi). Di' is the imagined data set 

inferred from recommendation Ri. We note that the trust E(θi) (the expectation of θi with 

respect to the distribution p(θi|Di, ξi)) is derived from the prior belief {α1,…, αr} and the 

                                                 
21 The requesting entity is also the trusting entity. 
22 In this thesis, we study the recommendation models from the point view of the recommenders since it is 

easy and unambiguous for classification. 
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past experience {n1,…,nr}. In our trust model, we highlight the following three 

recommendation models: 

1. Normal recommendation  

We say a recommendation is normal if {α1'+n1',…,αr'+nr'}={α1+n1,…,αr+nr}. Obviously, 

we have Ui(E(θi')) = Ui(E(θi)). 

2. Unfairly high recommendation 

We say a recommendation is unfairly high if Ui(E(θi')) > Ui(E(θi)). Dellarocas [12] calls 

"ballot stuffing". 

3. Unfairly low recommendation 

We say a recommendation is unfairly low if Ui(E(θi')) < Ui(E(θi)). Dellarocas [12] calls 

"bad-mouthing". 

One may think that the recommendation classification is too sensitive to the 

relationship of the two utility values. In this case, one may introduce a small tolerance 

threshold ε. If |Ui(E(θi')) - Ui(E(θi))|< ε, then the recommendation is thought to be a 

normal recommendation. 

Whitby et al. [4] point out that “the risk of unfair recommendations is highest when 

they can be used to manipulate the trust system to an entity's advantage. For instance, a 

buyer may collude with a seller to badmouth the seller's competitors, resulting in gains to 

the seller [4]. By careful construction of the trust system, this risk can be diminished, by 

either eliminating the incentive to lie, or increasing the cost of doing so. An example of 

the former technique is to hide the identity of entities from each other [12]. In a 

sufficiently large market, this eliminates the possibility of badmouthing another entity. 

An example of the latter technique is to allow buyers to rate sellers only after a 

transaction is conducted, and charge a small amount for every transaction, thus raising 

the cost of ballot-stuffing or bad-mouthing. This approach is taken by eBay [4].” 

In many systems, however, these techniques cannot be used. In these cases, it is 

desirable to be able to automatically detect and avoid unfair recommendations. 

5.3 Unfair recommendation detection and avoidance 

We propose that the requesting entity uses the Weighted Majority Algorithm to detect 
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and avoid the likely unfair recommendations. The basic idea is to discount each 

recommendation according to its relative weight, which will increase if the 

recommendation is fair and will decrease if the recommendation is unfair. Suppose there 

are f recommenders from which to query recommendations. Each recommender gives a 

recommendation Ri={αi,1+ni,1,…, αi,r+ni,r} (i=1,…,f) which are hyperparameters  of the 

posterior distribution p(θi|Di,ξi)=Dir(θi|αi,1+ni,1,…, αi,r+ni,r) based on the recommender's 

past experience. Note that it is impossible for the requesting entity to distinguish the 

subjective hyperparameters αi,1,…,αi,r from the sufficient statistics Ni={ni,1,…, ni,r}. Since 

these recommenders are not 100% trustworthy, their recommendations are discounted 

according to their relative weights. We refer to these discounted recommendations as 

equivalent samples, which are treated as if they are the requesting entity's own 

experience. For the requesting entity, the sufficient statistics for the equivalent sample of 

recommendation Ri are Ni'= Ri×wi/s where s=∑f
i=1wi and wi is the weight of 

recommender i. The final sufficient statistics are Nm=N+∑Ni' and the final posterior 

distribution of the requesting entity is: 

p(θm|Dm, ξ)=Dir(θm|α1+n1+ ∑(αi,1+ni,1)×wi/s,…, αr+nr+ ∑ (αi,r+ni,r)×wi/s). (32)
In the terminology of WMA, we say that E(θi) is the recommender's algorithm (the 

expectation of θi with respect to the distribution p(θi|Di, ξi)), and E(θm) is the master 

algorithm (the expectation of θm with respect to the distribution p(θm|Dm, ξ)). 

In the update step of WMA, the requesting entity estimates the correct label ρ using 

E(θ) (the expectation of θ with respect to the distribution p(θ|D, ξ)). The requesting 

entity now can update each recommender's weight using the factor 

2
|)()(|

)1(1
θθ EE

F i −
−−= β , note that E(θm), E(θi) and E(θ) are r-dimensional vectors, 

and |E(θi) - E(θ)| is the Euclidean distance23. The requesting entity uses E(θ) as the 

correct label ρ, because there does not exist a service that can provide a correct label ρ. 

Therefore, for the requesting entity, the only trustworthy way to get this label is to 

                                                 
23 θi are the parameters of the posterior distribution in recommendation Ri. 

θm are the parameters of the posterior distribution in master algorithm. 

θ are the parameters of the posterior distribution from past experience. 
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predict ρ purely based on his/her own past experience. 

5.4 Example 

We take a car wash example to illustrate the previous steps. To simplify our analysis, 

we assume that the outcome space is a 1-dimensional space, and the outcome (binomial) 

is either "good"(1) or "bad"(0). We can use a scalar quantity, the probability of outcome 

"good", p(x=1), to represent trust. We assume the hyperparameters αg, αb of the prior 

distribution for every entity are 1 and 1, respectively, which implies that Ninit=2 and the 

basic trust value is 1/2. This corresponds to two initial experiences with outcomes one 

"good" and one "bad". Car wash β is the service provider, and entity α is the service 

requestor. 

Now entity α can calculate its initial situational trust as follows: 

Initial situational trust Tα(β,”car wash”)(“good”)= p(x=1) = 1/2 

Initial situational trust Tα(β,”car wash”)(“bad”)= p(x=0) = 1/2 

(33)

Suppose entity α has seven experiences (n=7) denoted by an observation data set 

D={X1=x1,…,X7=x7}. The sufficient statistics for the data set D are N={2,5}, which 

means that two “good” outcomes and five “bad” outcomes have been actually observed. 

Now entity α can estimate its situational trust as follows:  

Tα(β,”car wash”)(“good”)= p(1) = (2+1)/(7+2)=1/3 

Tα(β,”car wash”)(“bad”)= p(0)=(5+1)/(7+2)=2/3 

(34)

Suppose entity α has two friends with weights w1=0.2 and w2=0.8. Friends give 

recommendations R1={6,2} (p(1)=0.75) and R2={3,7} (p(1)=0.3) respectively. Entity α 

can get the equivalent samples as follows: 

N1’ = {6,2}*0.2/(0.2+0.8) = {1.2, 0.4} 

N2’ = {3,7}*0.8/(0.2+0.8) = {2.4,5.6} 

(35)

With the equivalent samples, entity α can calculate the final posterior distribution as 

follows: 

p(θm|Dm, ξ)=Dir(θm|1+2+1.2+2.4,1+5+0.4+5.6)=Dir(θm|6.6,12) (36)

The situational trust can be estimated as follows: 

Tα(β,”car wash”)(“good”)= p(1) =6.6/(6.6+12)=0.355 (37)
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Tα(β,”car wash”)(“bad”)= p(0)=12/(6.6+12)=0.645 

Suppose after the transaction, the actual outcome is “bad”, then entity α can update its 

sufficient statistics N={2,6}. Entity α estimates the correct label ρ=2/(2+6)=0.25. The 

updating factor F for friend 1 is F=1-0.5*|0.75-0.25|=0.75. The new weight w1 is equal to 

0.2*0.75 = 0.15. Similarly entity α can get the updating factor F for friend 2: F=1-

0.5*|0.3-0.25|=0.975. The new weight w2 is 0.8*0.975=0.78. 

 

5.5 Decision making 

In our previous Section 2.4, we introduced the Expected Utility Theory (EUT). In 

Section 4.5, we introduced several utility models for rational decision making. All these 

utility models can be used here. The basic idea in a utility model is to map the multi-

dimensional trust distribution to a utility value, which can be sorted according to a 

goodness relationship. The service provider with the highest ranking according to the 

goodness relationship will be chosen. If several service providers are in the highest 

ranking, then the deciding entity randomly selects one among them. We note that the 

utility function is subjective (i.e. is personal to the deciding entity). 

6 Simulation 

We describe several simulation experiments to illustrate the effectiveness and 

robustness of our trust model and to learn to what extent the weighting technique of the 

WMA is efficient to detect unfair recommendations. We present the following 

simulations: (1) Single service provider simulation, (2) Multiple service providers 

simulation, and (3) Bootstrapping process simulation. 

6.1 Simulation description and configuration 

To simplify our analysis, we assume that the outcome space is a 1-dimensional space, 
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and the outcome (binomial) is either “good”(1) or “bad”(0). We can use a scalar quantity, 

the probability of outcome “good”, p(x=1) or p as a shorthand, to represent trust. We 

assume the utility mapping function U(x) = x for all entities. Therefore the decision 

criterion is to choose the service provider with the highest trust value, i.e. the highest 

probability of a “good” outcome. 

We assume the hyperparameters αg, αb of the prior distribution for every entity are 1 

and 1, respectively, which implies that Ninit=2, the prior distribution is Beta(1,1), and the 

basic trust value is 1/2. This corresponds to two initial experiences with outcomes one 

“good” and one “bad”. The simulation includes three car washes, which are the service 

providers, and 250 car owners, which are the service requestors. The performance of 

these car washes is fixed in the sense that the probability of outcome “good” has a fixed 

value for each car wash. The goal of the car owners is to choose the best car wash in their 

opinion and to estimate the performance of car washes with few mistakes. We define a 

transaction as a process that includes the following actions: car owner decides that 

his/her car needs a wash, queries recommendations, waits for recommendations, makes 

decision to select the best car wash, and has the car washed by the selected car wash. 

After each transaction, the car owner updates his/her experience and weights according 

to the actual outcome. The simulation is based on a Java discrete event simulation 

package - javaSimulation [21]. 

Other parameters are defined as follows: 

1. Each car owner uses exactly 6 randomly selected recommenders. 

2. For each car owner, we set all initial weights wi = 1 and β = 0.5 for the WMA. 

3. Performance of car wash 1, 2, and 3 are 0.6, 0.2, and 0.4, respectively. 

In the simulation, we use the following recommendation models: 

1. Normal recommendation: recommendation R={αg+ng, αb+nb} where {ng, nb} are the 

sufficient statistics for the observation data set 

2. Unfair high recommendation: recommendation R={αg+ng+nb, αb} in which all 

outcomes are “good” 

3. Unfair low recommendation: recommendation R={αg,αb+ng+nb} in which all 

outcomes are “bad” 

Briefly, the simulations proceed as two phases: the bootstrap phase and the steady-

52 



  

state phase. The bootstrap phase consists of 200 car owners and 5,000 transactions (refer 

to Section 6.4 for more details). After these 200 cars have conducted 5000 transactions in 

total, the simulation shifts to the steady-state phase. In this phase, 50 more new car 

owners enter the system without any prior experience. Each of these 50 car owners 

conducts 250 transactions for a total of 12,500 transactions. Meanwhile, the other 200 car 

owners will conduct approximately 50,000 transactions, which are not recorded. During 

each transaction, the car owner queries all his/her 6 recommenders and predicts the 

possible outcomes using his/her master algorithm. After the transaction, the simulation 

records the average trust value, the average relative weights for normal recommendations 

and unfair recommendations, and the average hit rate, which is defined as the probability 

that a given car wash is chosen. The simulation repeats 30 times with different random 

seeds to reduce any unexpected effects of the pseudo-random generation function. 

6.2 Single service provider simulation 

The first question is whether our trust model is really helpful for accurate predictions 

and for the detection and protection against unfair recommendations. To answer this 

question, we assume that only car wash 1 is available. We have defined the following 

scenarios: 

1. Scenario 1: All car owners are honest, and give normal recommendations 

2. Scenario 2: 20% of car owners give unfairly low recommendations 

3. Scenario 3: 40% of car owners give unfairly low recommendations24 

4. Scenario 4: 20% of car owners give unfairly high recommendations 

5. Scenario 5: 40% of car owners give unfairly high recommendations25 

The following figures show the trust value and relative weights for the 50 new car 

owners. The number on the x-axis is the transaction number for each of the car owners. 

The number on the y-axis represents the trust value, or relative weights. 

                                                 
24 There certainly exist scenarios which have higher percentage of unfairly low recommendations, such as 

90% or 100%. We will discuss these scenarios in the  of  Section  6.5 . Comparison
25 There certainly exist scenarios which have higher percentage of unfairly high recommendations, such as 

90% or 100%. 
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Figure 7: Trust value in Scenarios 1 through 5 (single) 

 
Figure 8: Relative weights in Scenario 2 (single) 

 
Figure 9: Relative weights in Scenario 3 (single) 
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Figure 10: Relative weights in Scenario 4 (single) 

 

Figure 11: Relative weights in Scenario 5 (single) 

 
Figure 7 shows that the requesting entity can make accurate predictions through WMA  

in all scenarios 1 through 5. We find that the average estimation error (estimated value 

minus correct value) becomes less then 0.05 after 10 transactions in scenarios 1 to 5. 

These simulations illustrate that our trust model can effectively detect and avoid the 

unfair recommendations. In scenarios 2 to 5, the difference between the relative weights 

of fair and unfair recommendations is significant. The relative weights of unfair 

recommendations constantly decrease to 0. We find that the unfair recommendations do 

not affect the prediction accuracy much after 10 transactions. The WMA does filter out 

the unfair recommendations by decreasing the relative weights of unfair 

recommendations. We note that the parameter β for the WMA is a factor in determining 
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the rate at which unfair recommendations are effectively removed from the car owner's 

decision-making process in scenarios 2 to 5. 

The relative weights of fair recommendations can be estimated as follows: We take 

Scenario 2 as an example. For each requesting entity, there are on average 6*80% = 4.8 

recommenders who give fair and normal recommendations and 6*20%=1.2 

recommenders who constantly give unfair recommendations. After sufficient number of 

transactions, the absolute weight of each fair recommendation is approximately equal, 

say w. The absolute weight of each unfair recommendation is approximately 0. With 

these assumptions, we can estimate the relative weights of fair recommendations as 

follows: 

Relative weights = w/(4.8*w + 1.2*0) = 1/4.8 ≈ 0.21. 

The result is confirmed by Figure 8. In fact, in this simple scenario, we even can 

estimate the percentage of recommenders who give normal recommendations from the 

relative weights figure. From Figure 8, we see that the relative weight of fair 

recommendations is approximately 0.2 and of unfair recommendations is approximately 

0. Suppose the percentage of recommenders who give normal recommendations is q. We 

use the same formula to calculate the relative weight 

Relative weight = w/(6*q*w + 6*(1-q)*0)=0.2 

We can solve the above equation for q and obtain q=83%, which is pretty close to the 

real percentage 80%. The same methods can be used for other scenarios. 

6.3 Multiple service providers simulation 

The second question is whether our trust model is really helpful for decision-making. 

We now assume that all three car washes are available. The simulation configuration is 

the same as in the previous section except that there are now three car washes. We have 

defined the following scenarios: 

1. Scenario 1: All car owners are honest, and give normal recommendations 

2. Scenario 2: 20% of car owners give unfairly low recommendations to car wash 1 and 

normal recommendations to the other car washes 

3. Scenario 3: 40% of car owners give unfairly low recommendations to car wash 1 and 
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normal recommendations to the other car washes 

4. Scenario 4: 20% of car owners give unfairly high recommendations to car wash 2 and 

normal recommendations to the other car washes 

5. Scenario 5: 40% of car owners give unfairly high recommendations to car wash 2 and 

normal recommendations to the other car washes 

The following figures show the trust value, hit rate, and relative weights for the 50 

new car owners. The number on the x-axis is the transaction number for each of the car 

owners. The number on the y-axis represents the trust value, hit rate, or relative weights. 

 

 

Figure 12: Trust value in Scenario 1 (multiple) 

 

 

Figure 13: Hit rate in Scenario 1 (multiple) 
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Figure 14: Trust value in Scenario 2(multiple) 

 

Figure 15: Relative weights in Scenario 2 (multiple) 

 

Figure 16: Hit rate in Scenario 2 (multiple) 
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Figure 17: Trust value in Scenario 3 (multiple) 

 

Figure 18: Relative weights in Scenario 3 (multiple) 

 

Figure 19: Hit rate in Scenario 3 (multiple) 
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Figure 20: Trust value in Scenario 4 (multiple) 

 

Figure 21: Relative weights in Scenario 4 (multiple) 

 

Figure 22: Hit rate in Scenario 4 (multiple) 
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Figure 23: Trust value in Scenario 5 (multiple) 

 

Figure 24: Relative weights in Scenario 5 (multiple) 

 

Figure 25: Hit rate in Scenario 5 (multiple) 
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Figure 12 shows that the car owners can make accurate prediction in Scenario 1 

(multiple), especially for car wash 1 and 3. However the trust value of car wash 2 has a 

positive bias 0.16. This is because the car owners have very few numbers of transactions 

with car wash 2. Thus the prior beliefs (basic trust value is higher than the performance 

of car wash 2) have an important impact on the trust value estimation. Therefore the trust 

value of car wash 2 is over estimated. 

Figure 13, Figure 16, Figure 22 and Figure 25 tell us that the average hit rate of car 

wash 1 in scenarios (multiple) 1, 2, 4, and 5 is very close to 100%, which is what we 

expect. Figure 19 tells us that the average hit rate of car wash 1 is close to 70% in 

Scenario 3 (multiple). This bad performance is due to a combination of two reasons. 

First, the 40% unfair low recommendations significantly lower the trust value for car 

wash 1, especially when the requesting entity only has 5 or fewer transactions (actually 

the average trust value for car wash 1 is less than that of car wash 3 in the first 5 

transactions). Second, the low trust value for car wash 1 consequently lowers the chance 

of being chosen. The requesting entity is blinded by these unfair low recommendations. 

Therefore the requesting entity has a limited chance to select car wash 1 and cannot 

discern correctly the quality of the recommendations for car wash 1. Figure 18 confirms 

that the relative weights of unfair recommendations are quite high compared to those in 

scenarios 2, 4, and 5 (multiple). 

Figure 21 shows that the average relative weights for normal and unfair 

recommendations are almost identical in Scenario 4 (multiple). This is because 20% 

unfair high recommendations for car wash 2 only make its trust value rise to 0.35, which 

is not high enough compared with car wash 1 and 3. Therefore the requesting entity only 

has very limited chance to select car wash 1, which makes the requesting entity have 

very limited chance to update the relative weights regarding car wash 1. The same reason 

also explains Figure 24. 

6.4 Bootstrapping process simulation 

The simulation in this section shows the bootstrapping process of our trust model. 

How fast can our trust model reach its steady state? In other words, the average trust of 
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service provider should depend on its performance. 

This simulation consists of three car washes and 50 car owners. These 50 car owners 

enter the system without any prior experience. Each of these 50 car owners conducts 250 

transactions for a total of 12,500 transactions. During each transaction, every car owner 

queries all his/her 6 recommenders and predicts the possible outcomes using his/her 

master algorithm. After the transaction, the simulation records the average trust value, 

the average relative weights for normal recommendations and unfair recommendations, 

and the average hit rate. The rest of the simulation configuration is the same as for the 

previous simulations. 

The scenarios are the same as in Section 6.3. The following figures show the trust 

value, hit rate, and relative weights for the 50 car owners. The number on the x-axis is 

the transaction number for each of the car owners. The number on the y-axis represents 

the trust value, hit rate, or relative weights. 

 

Figure 26: Trust value in Scenario 1 (bootstrap) 
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Figure 27: Hit rate in Scenario 1 (bootstrap) 

 

Figure 28: Trust value in Scenario 2 (bootstrap) 

 

Figure 29: Relative weights in Scenario 2 (bootstrap) 
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Figure 30: Hit rate in Scenario 2 (bootstrap) 

 

Figure 31: Trust value in Scenario 3 (bootstrap) 

 

Figure 32: Relative weights in Scenario 3 (bootstrap) 
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Figure 33: Hit rate in Scenario 3 (bootstrap) 

 

Figure 34: Trust value in Scenario 4 (bootstrap) 
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Figure 35: Relative weights in Scenario 4 (bootstrap) 
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Figure 36: Hit rate in Scenario 4 (bootstrap) 

 

Figure 37: Trust value in Scenario 5 (bootstrap) 

 

Figure 38: Relative weights in Scenario 5 (bootstrap) 
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Figure 39: Hit rate in Scenario 5 (bootstrap) 

The simulation results are similar to their counterparts in the Section on Multiple 

service providers simulation and the explanations are the same as those in that section. 

Compared with the Multiple service providers simulation, the difference is that there are 

no extra experienced car owners (in the previous simulations, there were 200 of these). 

Since all the car owners enter the system without prior experience, the basic trust has an 

important impact on their trust and recommendation in the first several transactions. This 

contributes to some difference in the figures. The simulations show that the average trust, 

relative weights, and hit rate stay nearly constant after 40 transactions (and, in fact, 

change very slowly after only 20 transactions). 

6.5 Comparison 

We continue the previous car wash simulations. The purpose of the simulation is to 

illustrate the accuracy of the proposed recommendation system when the performance of 

the service provider may vary over time. Our simulations also provide a comparison of 

our recommendation system with the Iterated Filtering Algorithm (IFA) proposed by 

Whitby et al. [4]. The simulation includes one car wash, which is the service provider, 

and 50 car owners, which are the service requestors. The simulation is divided into 

sessions, and each session is divided into transactions. After each session, the service 

provider adapts its performance Perf, which is the probability of outcome "good". 
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6.5.1 Forgetting factor 

Since the performance of the car wash changes over time, the basic assumption about a 

given outcome distribution for the actions of the entity, valid over all time, is not true any 

more. In this case, we must give different weights to the different experiences. It is 

desirable to give greater weight to more recent experiences. This can be achieved by 

introducing a forgetting factor γ where 0≤γ≤1. When a new experience yielding outcome 

xk is observed, the sufficient statistics N will be updated as follows: 

N := N×γ 

nk := nk+1 
(38)

In our simulation, we set the forgetting factor γ=0.7. 

6.5.2 Service provider behavior 

Once the car wash has committed to a transaction, it will either provide a “good” 

service (with a probability equal to its performance) or a “bad” service (with a 

probability equal to 1 – performance). At the end of each session t, the performance for 

the next session (t+1) is chosen randomly as follows: 

⎪
⎩

⎪
⎨

⎧
−
+

=+

31              
31  
31  

1

/qual to bability ewith a proPerf
/qual to bability ewith a prodeltaPerf
/qual to bability ewith a prodeltaPerf

Perf

t

t

t

t  
(39)

In the simulation, delta = 0.1. In addition, the performance Perft+1 is restricted to the 

range [0,1]. We note that this kind of service provider behavior is a Markovian random 

walk. 

6.5.3 Service requestor behavior 

Car owners are divided into three groups: (1) In the fair group, the car owners always 

give fair recommendations. (2) In the unfairly high group, each car owner selects one 

favorite car wash, and gives unfairly high recommendations with a probability equal to 

Punfair. (3) In the unfairly low group, each car owner selects one target car wash, and 
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gives unfairly low recommendations with a probability equal to Punfair. In this thesis, 

we only represent one car wash scenario. We note that there is no decision making 

process involved in one car wash scenario, while for multiple car wash scenarios, the 

decision making process is crucial. 

6.5.4 Recommendation model 

We define three recommendation models in the simulation: (1) Fair recommendation, 

for each trust value x, the recommendation given is y=x. (2) Unfairly high 

recommendation, for each trust value x, the recommendation is y=x+a*(1-x). (3) 

Unfairly low recommendation, for each trust value x, the recommendation is y=(1-a)*x. 

Here the const a is an exaggeration coefficient (0≤a≤1), which represents the degree of 

unfairness. Variable x is the estimation of the performance of the car wash. In this thesis, 

we only represent simulation results of fair and unfairly low recommendations. 

6.5.5 Simulation results 

The simulations are conducted to assess the effectiveness of our proposal in several 

scenarios. For the purpose of comparison, all scenarios are conducted in three different 

modes: WMA, IFA, and SIMPLE. In the WMA mode, the entities use our proposal to 

combine recommendations. In the IFA mode, the entities use IFA (Iterated Filtering 

Algorithm by Whitby et al. [4]) to filter out unfair recommendations. In the SIMPLE 

mode, which is the reference mode, the entities simply average all the recommendations. 

All simulations are conducted over 2000 transactions (20 sessions of 100 transactions 

each). The simulation is based on a Java simulation package - javaSimulation [21]. 

Several initial parameters are defined as follows: 

1. Each car owner has exactly 6 randomly selected recommenders. 

2. For each car owner, we set the initial weights wi=1 and β=0.5 for WMA, and 

quantile=0.01 for IFA. 

3. Initial performance of car wash 1 is 0.6. 

The following figures show the average trust value and the average estimation error 

for the car wash in the first 2000 transactions. The number on the x-axis is the 
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transaction number of the car wash. The number on the y-axis represents average trust 

value, performance, and average estimation error, which is defined as average trust value 

minus performance. 
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Figure 40: Trust value, performance and error with 0% unfair recommenders 
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Figure 41: Trust value, performance and error with 20% unfair recommenders 

Figure 40 is the basic scenario, in which there are no unfair recommenders. Figure 41 

consists of 20% unfairly low recommenders with Punfair=100% and exaggeration 

coefficient a=0.875. Figure 42 consists of 40% unfairly low recommenders with 

Punfair=100% and exaggeration coefficient a =0.875. 

71 



  

 

Trust Value & Error

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 201 401 601 801 1001 1201 1401 1601 1801

Transactions

Error (WMA) Error (IFA)

Error (SIMPLE) Performance

TrustValue (WMA) TrustValue (IFA)

TrustValue (SIMPLE)

 

Figure 42: Trust value, performance and error with 40% unfair recommenders 

Figure 40 shows that in the ideal scenario, the WMA and IFA [4] algorithms are not 

helpful, since there are no unfair recommendations. Actually in transactions 1700-2000, 

the average estimation error in the IFA mode is worse than that in the SIMPLE mode, 

which implies that the IFA mistakenly filters out fair recommendations. Figure 41 and 

Figure 42 show that both the WMA and the IFA can detect and avoid unfair 

recommendations to some degree. These figures directly illustrate how the trust value 

follows the changing performance in different modes. 

6.5.6 Algorithm effectiveness 

The effectiveness of each algorithm is examined by simulating scenarios with three 

parameters: 

1. The proportion of unfair recommenders 

2. The probability that unfair recommenders give unfair recommendation (Punfair) 

3. The degree of unfairness of unfair recommendations (exaggeration coefficient a) 

For ease of comparison, we summarize the mean and standard deviation of average 

estimation error of WMA, IFA, and SIMPLE algorithms in different scenarios. 
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Unfairly low rate 0 0.2 0.4 0.6 0.8 1.0 

WMA -0.0267 -0.0264 -0.0323 -0.0497 -0.1123 -0.3943 

IFA -0.0546 -0.0610 -0.0987 -0.2624 -0.5854 -0.7203 

mean 

SIMPLE -0.0310 -0.0661 -0.1412 -0.2394 -0.4475 -0.6415 

WMA 0.0607 0.0629 0.0686 0.0734 0.0789 0.0772 

IFA 0.0558 0.0550 0.0592 0.0674 0.1509 0.1567 

std 
dev 

SIMPLE 0.0611 0.0629 0.0639 0.0715 0.0950 0.1270 

Table 11: Statistical information about average error (α=0.875, Punfair=1) 

The following figure shows the mean and standard deviation of average estimation 

error of WMA, IFA, and SIMPLE algorithms during the first 2000 transactions in 

different scenarios described in Table 11. The number on the x-axis is the unfairly low 

rate (proportion of unfair recommenders). The number on the y-axis represents the mean 

and standard deviation of average estimation error. We note that the negative mean value 

of the average estimation error is due to the fact that the performance increases for most 

of the sessions. 

Mean & Std Deviation

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Unfair low rate

Mean (WMA)
Std Dev (WMA)
Mean (IFA)
Std Dev (IFA)
Mean (SIMPLE)
Std Dev (SIMPLE)

0.2 0.4 0.6 0.8 1.0
 

Figure 43: Mean and standard deviation of average estimation error 

It is clear in Figure 43 that the standard deviation of average estimation error of the 

three algorithms is not significantly different. However the standard deviation of the IFA 

algorithm increases faster than the others when the unfairly low rate is greater than 60%. 

Our proposal (WMA) has the least mean average estimation error (abstract value). 
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Table 12 and Figure 44 show the effectiveness of the three algorithms in scenarios 

with exaggeration coefficient a= 0.875 and Punfair=0.25. Not surprisingly, all the 

algorithms increase their effectiveness compared with those in Table 11 and Figure 43. It 

is shown that IFA algorithm is the worst when the unfairly low rate is less than 40%. 

WMA is the most effective algorithm in these scenarios. 

Unfairly low rate 0 0.2 0.4 0.6 0.8 1.0 

WMA -0.0267 -0.0256 -0.0302 -0.0430 -0.0630 -0.1187 

IFA -0.0546 -0.0531 -0.0542 -0.0660 -0.1117 -0.1782 

mean 

SIMPLE -0.0310 -0.0335 -0.0550 -0.0847 -0.1285 -0.1866 

WMA 0.0607 0.0626 0.0672 0.0676 0.0668 0.0598 

IFA 0.0558 0.0562 0.0609 0.0605 0.0582 0.0601 

std 
dev 

SIMPLE 0.0611 0.0635 0.0657 0.0655 0.0657 0.0623 

Table 12: Statistical information about average error (α=0.875, Punfair=0.25) 
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Figure 44: Mean and standard deviation of average estimation error 

The following two figures show the effectiveness in scenarios with exaggeration 

coefficient a= 0.2, Punfair=0.25, and exaggeration coefficient a= 0.99, Punfair=1, 

respectively. 
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Figure 45: Mean and standard deviation of average error (α=0.2, Punfair=0.25) 
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Figure 46: Mean and standard deviation of average error (α=0.99, Punfair=1) 

Table 11 and Figure 43 show that the IFA [4] algorithm is not effective compared with 

the SIMPLE algorithm in the scenario with exaggeration coefficient a=0.875. In the 

scenario with low exaggeration coefficient and low Punfair, the IFA is particularly 

ineffective, even worse than the SIMPLE algorithm, which is illustrated by Figure 45. 

Figure 46 shows that the IFA algorithm is most effective in the scenario with very high 

exaggeration coefficient a= 0.99. To summarize, the IFA algorithm is very sensitive to 

the exaggeration coefficient. The higher the exaggeration coefficient, the more effective 

the IFA algorithm is. Regarding the average estimation error (absolute value), our 

proposal (WMA) is better than IFA in all the above scenarios. More interestingly, our 
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proposal is also much faster than IFA, since IFA consists of complex lower and upper 

quantile calculations. In our simulations, we also changed the parameter quantile of the 

IFA algorithm several times and found that the IFA algorithm produces the best results in 

most situations when the parameter quantile has the value 0.01. 

6.6 Summary 

From the simulation, we find that unfair high recommendations have no long run 

effect on our trust model, because the requesting entity can make accurate estimations 

based on his/her own experience; therefore, the requesting entity can detect and avoid 

unfair high recommendations. However the unfair low recommendations can have a long 

run effect in our trust model, if and only if the unfair low recommendations can alter the 

ranking of service providers as illustrated in Scenario 3 (multiple). There may be 

situations in which unfair recommendations cannot be automatically detected, but their 

effect is reduced over time. 

In the Single service provider simulation of Section 6.2, the requesting entities can 

make accurate prediction in all the scenarios. This is because there is only one available 

car wash. The car owner can accumulate own experience and make accurate prediction. 

And there is virtually no decision making process involved in the scenarios in this 

section. 

In the Multiple service providers simulation of Section 6.3, the requesting entities can 

not make accurate prediction in all the scenarios. This is because they are facing the 

more complex situations: three available car washes mean that the car owners have to 

make a decision before each transaction. The right decisions are always based on the 

accurate predictions which could be affected by recommendations. The car owners 

struggle to filter out unfair recommendations. 

In the Bootstrapping process simulation of Section 6.4, the requesting entities face 

almost the same problems as in Section Multiple service providers simulation. 

In the Comparison of Section 6.5, we compare the effectiveness of WMA, IFA [4], 

and SIMPLE algorithms. The simulation results confirm that our approach can improve 

the accuracy of trust estimation in the scenarios with changing performance. 
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7 Conclusions and future work 

7.1 Conclusions 

We have addressed the problem of building a general trust model for online entities 

based on their direct experiences and the recommendations of other entities. Considering 

that trust is a complex and multi-faceted thing, we use the estimated distribution in a 

multidimensional outcome space to represent trust. The statistical characterizations of 

trust (Bayesian estimation, Dirichlet distribution, outcome space mapping) are discussed. 

Our trust model can be used by different decision models (utility, failure probability, 

satisfaction) for rational decision making in different scenarios. 

We also have studied the problem of unfair recommendations. We focus on detection 

and protection against unfair recommendations. For simplicity, this work assumes that 

the unfair recommendations are consistent in the sense that recommenders will not 

switch from one recommendation model to another recommendation model (e.g. give an 

unfair high recommendation one time and an unfair low recommendation the next time). 

We also assume that each entity has a fixed number of recommenders. Our approach 

integrates Bayesian estimation with a Weighted Majority Algorithm. We have shown 

through simulations that it is flexible and effective in most situations. Our proposal 

shows great promise as a technique for improving the accuracy of trust estimation, and 

hence the fairness and robustness of trust models. In particular, our proposal is 

computationally efficient compared with the IFA [4] algorithm. 

Due to the intrinsic limitations of WMA, our trust model will become ineffective when 

either of the following conditions holds: (1) The requesting entity has only one 

recommender, which makes the relative weight always equal to 1, no matter what the 

recommendations are. (2) Among the requesting entity's recommenders, no one gives 

normal recommendations. These limitations can be solved by treating the requesting 

entity him/herself as a recommender. Therefore, the requesting entity at least has one 

recommender (him/herself) who always gives normal recommendations. 
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In our trust model, we studied three recommendation models. However, there may be 

another kind of unfair recommendation: flooded recommendation, in which the 

experience number is enlarged deliberately by the recommender in order to circumvent 

the Weighted Majority Algorithm. The flooded recommendation can be avoided by 

imposing an upper bound on experience number in recommendations. Any 

recommendation whose experience number exceeds the upper bound should be scaled to 

the upper bound. 

Our trust model is a deterministic model26, in the sense that the output (decision-

making, trust, weights) can be predicted with 100 percent certainty when the input 

(recommendations, self experience) is known. This deterministic feature can sometimes 

make our model ineffective for unfair low recommendations, as illustrated in the 

simulations above. To eliminate the long run effect of unfair low recommendations, a 

small perturbation can be introduced into the decision-making. Some possible techniques 

for achieving this include random decision-making at certain rate (for example, at every 

tenth transaction the requesting entity chooses randomly among all possible service 

providers) and dynamic recommender selection (for example, at every tenth transaction 

the requesting entity chooses a new recommender randomly and/or deletes the 

recommender with the least weight). We will be exploring the implications of such non-

determinism on the quality of decision making in future work. 

7.2 Future work 

There are many questions left to answer in our proposed trust model. Among these, we 

highlight the following important issues. 

1. Non-Determinism 

We have shown that our trust model is a deterministic model and the drawbacks and 

                                                 
26 From Wikipedia [38], “a deterministic system is a conceptual model of the philosophical doctrine 

determinism applied to a system for understanding everything that has and will occur in the system, based 

on the physical outcomes of causality. In a deterministic system, every action, or cause, produces a 

reaction, or effect, and every reaction, in turn, become the cause of subsequent reactions. The totality of 

these cascading events can theoretically show exactly how the system will exist at any moment in time.” 
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the limitations. We believe that some random perturbation could improve the 

performance of our trust model in real situations. 

2. Recommender finding 

In our trust model, we assume every entity has a group of fixed recommenders. This is 

too restrictive for real situations. To relax this restriction, we should study the dynamic 

recommender selection algorithm. Another issue is what weight should be assigned 

initially to the new recommenders. Since the absolute weights in WMA decrease 

constantly, it is obviously unfair to assign the same initial weights to new 

recommenders. 

3. Dynamic behavior 

In all the simulations, we assumed that all the unfair recommendations are consistent 

in the sense that recommenders will not switch from one recommendation model to 

another recommendation model (e.g. give an unfair high recommendation one time 

and an unfair low recommendation the next time). This assumption is also too 

restrictive for real situations. The smart entity probably does not behave in such a 

predictable way. In other words, we should study the dynamic behavior of smart 

entities to see the effectiveness and robustness of our trust model. 

4. Computational complexity, memory requirements and traffic efficiency 

Network traffic efficiency is the main focus.  Traffic efficiency is closely related to the 

connections between entities. In order to find enough recommendations, the entity 

tends to query as many other entities as possible. This will cause a serious network 

traffic burden if no traffic control is applied. 

5. Repeatable transactions 

Our approach assumes that entities can interact with each other repeatedly. In a small-

size online community, this is not a problem. In a large-size one, this assumption is 

generally not true. Take eBay for an example: an empirical study [30] based on data 

from February 1 to June 30, 1999, has shown that 89% of all seller-buyer pairs 

conducted just one transaction during the time period, that 98.9% conducted no more 

than four transactions, that it is rare for a buyer to meet the same seller, and that trust 

is mostly built on a single experience. In that case, however, we believe that if the 
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small world phenomenon27 [34] occurs, then it can make our trust applicable in such 

large-size online community [42]. According to Jovanovic [23], the phenomenon 

happens in the P2P network: Gnutella. It means that people tend to interact with other 

people more frequently in a small sub-community than with people outside. 

7.3 Comparison with other trust models 

In Chapter 2, we summarize the background and related work. We review previous 

work on trust models, trust representation, recommendation handling, and decision 

making. In section 2.3, we also compare our trust model with two others briefly. In this 

section, we want to make a thorough comparison with these two trust models considering 

the simulation results. 

The trust model of Whitby et al. [4] is a memoryless system, which calculates the 

combined rating based on current recommendations only. This memoryless feature 

means that entities can not accumulate knowledge about the quality of recommendations 

in the past. As illustrated in the simulations, the average reputation error will not 

decrease while the trusting entity repeats transactions. With 30% of entities rating 

unfairly, the average reputation error is around 0.1. With 40% of entities rating unfairly, 

Whitby et al.’s trust model breaks down [4]. However, since this trust model is a 

memoryless system, its performance is not affected by the size of the online community, 

in other words, the performance of Whitby et al.’s trust model does not depend on 

whether the small world phenomenon [34] occurs or not. 

Unlike Whitby et al.’s trust model, Both Yu and Singh’s trust model [9] and our trust 

model are non-memoryless systems in the sense that the current trust is correlated with 

past recommendations, current recommendations and past experience. Entities in Yu and 

                                                 
27 In Wikipedia [39], “the small world phenomenon is the theory that everyone in the world can be reached 

through a short chain of social acquaintances. The concept gave rise to the famous phrase six degrees of 

separation after a 1967 small world experiment by psychologist Stanley Milgram which found that two 

random US citizens were connected by an average of six acquaintances. However, after more than thirty 

years its status as a description of heterogeneous social networks (such as the aforementioned ‘everyone in 

the world’) still remains an open question.” 
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Singh’s trust model and ours maintain a set of weights and they update weights after 

each transaction. By updating weights, entities accumulate knowledge about the quality 

of recommendations given by different recommenders. The average reputation/trust error 

will decrease while entities repeat transactions, which is illustrated in all simulations in 

our trust model. In Figure 7 for example, the average trust error in Scenario 5 (single) is 

around 0.13 in first two transactions, 0.08 at the 5th transaction, and 0.05 at the 10th 

transaction. Similarly, the simulation in Yu and Singh’s trust model shows that the rating 

error changes from 0.31 to about 0.17 after 5,000 simulation cycles, and becomes less 

than 0.05 after 10,000 cycles. 

Both Yu and Singh’s trust model and ours are useful where two entities can repeatedly 

interact with each other. In other words the small world phenomenon [34] must happen, 

so that weights can be updated repeatedly. In our trust model, an entity needs to update 

weights around 10 times to ensure the average trust error is less than 0.05. In Yu and 

Singh’s trust model, an entity needs to update weights around 20 times to ensure the 

average rating error is less than 0.05. We note that these values are obtained from 

different simulation configurations. If the small world phenomenon [34] does not happen 

(that is, if we assume that trust in built on less than 5 experiences), then the average trust 

error in our model is around 0.13 to 0.08 and the average rating error in Yu and Singh’s 

trust model is around 0.31 to 0.25. The difference in performance of Yu and Singh’s trust 

model and ours is due to a combination of two reasons. First, by using Bayesian 

estimation, entities in our model can integrate their subjective prior knowledge and the 

actual experience into the estimation of trust. The prior knowledge lets entities in our 

model have a better starting point. Second, by using a better version of WMA, entities in 

our model can learn faster than those in Yu and Singh’s trust model [9]. Entities in Yu 

and Singh’s trust model [9] only estimate the correct label by using three values: 0, 0.5 

and 1, while entities in our model estimate the correct label by using the distribution of 

past experience. 
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Appendices 

A Measures of distance 

A.1 Euclidean distance 

The Euclidean distance is defined as: 
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Support these xi, yi in r-dimensional vectors x, y are probabilities. We want to calculate 
the range of the Euclidean distance between these two vectors. This problem can be 
presented in mathematics as follows: 
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Therefore, the range of the Euclidean distance between these two vectors is ]2,0[ . 

A.2 Minkowski metrics 

The Minkowski metric is defined as: 
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distance cubic 3 tdistance,Euclidean  2 tdistance, Hamming 1t
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Support these xi, yi in r-dimensional vectors x, y are probabilities. We want to calculate 
the range of the Minkowski distance between these two vectors. This problem can be 
presented in mathematics as follows: 
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Therefore, the range of the Minkowski distance between these two vectors is ]2,0[ t . 

 

A.3 Clack’s distance 

The Clack’s distance is defined as: 
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Support these xi, yi in r-dimensional vectors x, y are probabilities. We want to calculate 
the range of the Clack’s distance between these two vectors. This problem can be 
presented in mathematics as follows: 
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Therefore, the range of the Clack’s distance between these two vectors is ],0[ r . 

 

A.4 Cosine distance 

The Cosine distance is based on vector properties in a Euclidean space. It measures the 
Cosine angle in an r-dimensional vector space. This metric is defined as: 
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Support these xi, yi in r-dimensional vectors x, y are probabilities. We want to calculate 
the range of the Cosine distance between these two vectors. This problem can be 
presented in mathematics as follows: 
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Proof: 
According to the definition, we have 
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Therefore, the range of the Cosine distance between these two vectors is . ]1,0[

B Probability that trust value is less than 

basic trust value 

We calculate the probability that the trust value is less than basic trust value. Several 

different mathematical approximations will also be presented. We keep all the 

assumptions in the simulations. And we only study the probability for car wash 1 in 

Section 6.2 Single service provider simulation. 

We assume that the entity “Bob” has observed the data set D={X1=x1, …,Xn=xn} for 

which the sufficient statistics are N={ng,nb}, where ng is the number of times X=“good” 

in D which consists of n independent identically distributed random outcomes, in other 

words, X is a Bernoulli trial with probability p. We know that ng is a Binomial 

distribution. 

knk
g pp

k
n

knP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== )1()(  

where the parameter p is the performance. The trust value can be calculated as follows: 
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The probability that the trust value is less than the basic trust value is 
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where [basicTrust×n] is the largest integer less than basicTrust×n, Note if basicTrust×n 
is an integer, then [basicTrust×n]= basicTrust×n -1. 

B.1 Approximation 

1. Beta function 
For more detailed information, please refer to the mathworld website at 

http://mathworld.wolfram.com/BinomialDistribution.html. Here we only present the 

results. 

Let k=[basicTrust×n] 
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where B(p;k+1,n-k) is the incomplete beta function and B(k+1,n-k) is the beta function. 

2. Normal distribution 
We present an approximation to the Bernoulli distribution for large n. For more 

detailed information, please refer to the mathworld website at 

http://mathworld.wolfram.com/BernoulliDistribution.html. Here we only present the 

results.  
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Define which is the variance of the Bernoulli distribution. When n is large 

enough, we get the following approximation (Demoivre-Laplace Theorem) 
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−≈= . Note this is a normal distribution. We then can 

use the standard normal distribution to estimate the probability. 
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3. Poisson distribution 
For p<<1, a different approximation procedure shows that the binomial distribution 

approaches the Poisson distribution. For more detailed information, please refer to the 

mathworld website at http://mathworld.wolfram.com/PoissonDistribution.html. Here we 

only present the results. 

Let λ=np 

!
)(

k
eknP

k

g

λλ −

==  Note that the sample size n has completely dropped out of the 

probability function, which has the same functional form for all values of λ. 
For illustration purpose, the approximation is plotted in the following Figure 47 (refer 

to Appendix D.4  for MATLAB code). 

 

Figure 47: Approximation 
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C Range of experience number 

According to experience number update relations, we can calculate the largest possible 

n as followings. 

nk = nk×γ+1 

ni = ni×γ  for i=1,…r and i≠k 

n= nk+∑ni= nk×γ+1+∑ni×γ= (nk+∑ni)×γ+1= n×γ+1 

n=n×γ+1 

n=1/(1-γ). 

When γ=0, the largest n is just 1, in other words, the entity forgets all the past 

experiences but the latest one. When γ=1, the largest n is infinite, in other words, the 

entity can remember all the past experiences.  

D MATLAB code 

D.1 Beta distributions 

This MATLAB code is used to generate the beta distribution. 

 
figure; 

subplot(1,3,1); 

apha1=12; 

apha2=12; 

theta=0:0.01:1; 

p=gamma(apha1+apha2)./gamma(apha1)./gamma(apha2).*theta.^(apha1-1).*(1-theta).^(apha2-1); 

plot(theta,p); 

title('beta(p|12,12)'); 

xlabel('probability'); 

ylabel('pdf'); 
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subplot(1,3,2); 

apha1=2; 

apha2=8; 

theta=0:0.01:1; 

p=gamma(apha1+apha2)./gamma(apha1)./gamma(apha2).*theta.^(apha1-1).*(1-theta).^(apha2-1); 

plot(theta,p); 

title('beta(p|2,8)'); 

xlabel('probability'); 

%ylabel('pdf'); 

 

subplot(1,3,3); 

apha1=5; 

apha2=3; 

theta=0:0.01:1; 

p=gamma(apha1+apha2)./gamma(apha1)./gamma(apha2).*theta.^(apha1-1).*(1-theta).^(apha2-1); 

plot(theta,p); 

title('beta(p|5,3)'); 

xlabel('probability'); 

D.2 Bayesian estimation 

This MATLAB code is used to generate the Bayesian estimation 3D mesh. 

clear all; 

n=6; 

[x,y]=meshgrid(0:1:20, 0:1:20); 

z= x./(x+y); 

mesh(z); 

xlabel('α_g+g'); 

ylabel('α_b+b'); 

zlabel('probability'); 

gridon; 
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D.3 The upper bound of mistakes of WM 

This MATLAB code is used to generate the upper bound of mistakes of WM. 

clear all; 

n=6; 

m=20; 

beta = 0.01:0.01:1 

count=1; 

for beta = 0.01:0.01:1 

    mistake(count) = (log10(n) + m*log10(1/beta))/log10(2/(1+beta)); 

    count =count+1; 

end; 

 

i = 0.01:0.01:1 

plot(i,mistake); 

xlabel('beta'); 

ylabel('upper bound of mistakes made by WM'); 

grid on; 

D.4 Probability that the trust value is less than basic 

trust value 

This MATLAB code is used to generate the probability that the trust value is less than 

basic trust value. 

clear all; 

basicTrust = 0.5; 

p = 0.6; 

repeat=100; 

for N= 1:repeat 

    k = floor(basicTrust*N); 

    if k == basicTrust*N  

        k = k-1; 

    end; 

    sigma =sqrt( N*p*(1-p)); 
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    z= (k-N*p)/sigma; 

    ppp(N)=normcdf(z); 

    pp(N) = 1-betainc(p,k+1, N-k); 

end; 

 

i=1:repeat; 

plot(i,pp,i,ppp); 

title('trust dynamic'); 

ylabel('Prob below basic trust'); 

xlabel('experience'); 

grid on; 
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